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Abstract

The Indian Buffet Process is a versatile statistical tool for modeling distributions
over binary matrices. We provide an efficient spectral algorithm as an alternative
to costly Variational Bayes and sampling-based algorithms. We derive a novel
tensorial characterization of the moments of the Indian Buffet Process proper and
for two of its applications. We give a computationally efficient iterative inference
algorithm, concentration of measure bounds, and reconstruction guarantees. Our
algorithm provides superior accuracy and cheaper computation than comparable
Variational Bayesian approach on a number of reference problems.

1 Introduction

Inferring the distributions of latent variables is a key tool in statistical modeling. It has a rich history
dating back over a century to mixture models for identifying crabs [27] and has served as a key tool
for describing diverse sets of distributions ranging from text [ 10] to images [ 1] and user behavior [4].
In recent years spectral methods have become a credible alternative to sampling [19] and variational
methods [9, 13] for the inference of such structures. In particular, the work of [6, 5, 11, 21, 29]
demonstrates that it is possible to infer latent variable structure accurately, despite the problem
being nonconvex, thus exhibiting many local minima. A particularly attractive aspect of spectral
methods is that they allow for efficient means of inferring the model complexity in the same way
as the remaining parameters, simply by thresholding eigenvalue decomposition appropriately. This
makes them suitable for nonparametric Bayesian approaches.

While the issue of spectral inference in Dirichlet Distribution is largely settled [0, 7], the domain
of nonparametric tools is much richer and it is therefore desirable to see whether the methods can
be extended to other models such as the Indian Buffet Process (IBP). This is the main topic of our
paper. We provide a full analysis of the tensors arising from the IBP and how spectral algorithms
need to be modified, since a degeneracy in the third order tensor requires fourth order terms. To
recover the parameters and latent factors, we use Excess Correlation Analysis (ECA) [8] to whiten
the higher order tensors and to reduce their dimensionality. Subsequently we employ the power
method to obtain symmetric factorization of the higher-order terms. The method provided in this
work is simple to implement and has high efficiency in recovering the latent factors and related
parameters. We demonstrate how this approach can be used in inferring an IBP structure in the
models discussed in [18] and [24]. Moreover, we show that empirically the spectral algorithm
provides higher accuracy and lower runtime than variational methods [14]. Statistical guarantees for
recovery and stability of the estimates conclude the paper.

QOutline: Section 2 gives a brief primer on the IBP. Section 3 contains the lower-order moments
of IBP and its application on different model. Section 5 discusses concentration of measure of
moments. Section 4 applies Excess Correlation Analysis to the moments and it provides the basic
structure of this Algorithm. Section 6 shows the empirical performance of our algorithm. Due to
space constraints we relegate most derivations and proofs to the appendix.



2 The Indian Buffet Process

The Indian Buffet Process defines a distribution over equivalence classes of binary matrices Z with
a finite number of rows and a (potentially) infinite number of columns [!7, [8]. The idea is that
this allows for automatic adjustment of the number of binary entries, corresponding to the number
of independent sources, underlying causes, etc. This is a very useful strategy and it has led to many
applications including structuring Markov transition matrices [!5], learning hidden causes with a
bipartite graph [30] and finding latent features in link prediction [26]. n € N the number of rows of
Z, i.e. the number of customers sampling dishes from the “ Indian Buffet”, let m;, be the number of
customers who have sampled dish k, let K, be the total number of dishes sampled, and denote by
K}, the number of dishes with a particular selection history h € {0;1}". Thatis, K} > 1 only if
there are two or more dishes that have been selected by exactly the same set of customers. Then the
probability of generating a particular matrix Z is given by [ 18]

of "] Ty (= m)(mg — 1)!
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Here « is a parameter determining the expected number of nonzero columns in Z. Due to the
conjugacy of the prior an alternative way of viewing p(Z) is that each column (aka dish) contains
nonzero entries Z;; that are drawn from the binomial distribution Z;; ~ Bin(m;). That is, if we
knew K, i.e. if we knew how many nonzero features Z contains, and if we knew the probabilities
m;, we could draw Z efficiently from it. We take this approach in our analysis: determine K and
infer the probabilities 7; directly from the data. This is more reminiscent of the model used to derive
the IBP — a hierarchical Beta-Binomial model, albeit with a variable number of entries:

olof
j € {n}
i€ {Ki}

In general, the binary attributes Z;; are not observed. Instead, they capture auxiliary structure per-
tinent to a statistical model of interest. To make matters more concrete, consider the following two
models proposed by [ 18] and [24]. They also serve to showcase the algorithm design in our paper.

Linear Gaussian Latent Feature Model [18]. The assumption is that we observe vectorial data
x. It is generated by linear combination of dictionary atoms A and an associated unknown number
of binary causes z, all corrupted by some additive noise €. That is, we assume that

x = Az + e where € ~ N(0,0%1) and z ~ IBP(a). (2)

The dictionary matrix A is considered to be fixed but unknown. In this model our goal is to infer both
A, 02 and the probabilities m; associated with the IBP model. Given that, a maximum-likelihood
estimate of Z can be obtained efficiently.

Infinite Sparse Factor Analysis [24]. A second model is that of sparse independent component
analysis. In a way, it extends (2) by replacing binary attributes with sparse attributes. That is, instead
of z we use the entry-wise product z.xy. This leads to the model

x = A(z.xy) + ¢ where e ~ N'(0,5°1) , z ~ IBP(a) and y; ~ p(y) (3)

Again, the goal is to infer A, the probabilities 7; and then to associate likely values of Z;; and Y;;
with the data. In particular, [24] make a number of alternative assumptions on p(y), namely either
that it is iid Gaussian or that it is iid Laplacian. Note that the scale of y itself is not so important
since an equivalent model can always be found by rescaling A suitably.

Note that in (3) we used the shorthand .x to denote point-wise multiplication of two vectors in
’Matlab’ notation. While (2) and (3) appear rather similar, the latter model is considerably more
complex since it not only amounts to a sparse signal but also to an additional multiplicative scale.
[24] refer to the model as Infinite Sparse Factor Analysis (isSFA) or Infinite Independent Component
Analysis (iICA) depending on the choice of p(y) respectively.



3 Spectral Characterization

We are now in a position to define the moments of the associated binary matrix. In our approach
we assume that Z ~ IBP(«). We assume that the number of nonzero attributes k is unknown
(but fixed). Our analysis begins by deriving moments for the IBP proper. Subsequently we apply
this to the two models described above. All proofs are deferred to the Appendix. For notational
convenience we denote by & the symmetrized version of a tensor where care is taken to ensure
that existing multiplicities are satisfied. That is, for a generic third order tensor we set Sg[A];;x =
Aijk -+ Akij + Ajki + Ajik —+ Akji —+ A’Lk] HOWCVCI', if c.g. A=B X c with Bij = Bjiv we only
need G3[Al;jx = Aiji + Akij + Aji; to obtain a symmetric tensor.

3.1 Tensorial Moments for the IBP

A degeneracy in the third order tensor requires that we compute a fourth order moment. We can
exclude the cases of m; = 0 and m; = 1 since the former amounts to a nonexistent feature and the
latter to a constant offset. We use M; to denote moments of order 7 and .S; to denote diagonal(izable)
tensors of order 7. Finally, we use 7 € RX+ to denote the vector of probabilities ;.

Order 1 This is straightforward, since we have
My :=E,[z] =7 =: 5. @)
Order 2 The second order tensor is given by
My :=E, [z ® 2] :7r®7r+diag(ﬂ'—772) =51 ®5 —|—diag(7r—7r2). (5)
Solving for the diagonal tensor we have
So = My — S1 ® 51 = diag (7r — 71'2) . (6)

The degeneracies {0, 1} of 7 — 72 = (1 — 7) can be ignored since they amount to non-existent
and degenerate probability distributions.
Order 3 The third order moments yield

M; :=E,.[2Q:z0z]=1@mQ7+ &;3 [ﬂ@diag(ﬂ'—ﬂjﬂ —|—diag(7r—37r2—|—27r3) @)

=51 ® 51 ® 51 + 63 [S1 ® S] + diag (7 — 372 + 27%) . (8)
Sy =Mz — &3 [S1 ® So] + 51 ® S1 ® Sy = diag (7 — 37> 4 27°) . )
Note that the polynomial 7 — 372 + 273 = 7(2m — 1)(w — 1) vanishes for 7 = . This is

undesirable for the power method — we need to compute a fourth order tensor to exclude this.
Order 4 The fourth order moments are

My=E,[2020282]=5®51851 5 +6[S2®S51 ®S51] + S3[S2 x Sa]
+ &4 [S3 ® 1] + diag (7 — 7n* + 127° — 67%)
Sy:=My;— 51851051 ®85 —64[S2®51 ®51] — 63 [S2 X Sa] + 6455 @S]
=diag (7 — 7n* + 127° — 67*) . (10)

The roots of the polynomial are {0, — 1/v/12, 3 +1//12,1}. Hence the latent factors and
their corresponding 7, can be inferred either by S5 or Sy.

3.2 Application of the IBP

The above derivation showed that if we were able to access z directly, we could infer 7 from it
by reading off terms from a diagonal tensor. Unfortunately, this is not quite so easy in practice
since z generally acts as a latent attribute in a more complex model. In the following we show how
the models of (2) and (3) can be converted into spectral form. We need some notation to indicate
multiplications of a tensor M of order k by a set of matrices A;.

[T(M’ Ay, Ak)]il,“.ik = Z Mjhmjk [Al}iljl et [Ak]

Jiy---Jk

(1)

ikjk



Note that this includes matrix multiplication. For instance, A] M Ay = T'(M, Ay, As). Also note
that in the special case where the matrices A; are vectors, this amounts to a reduction to a scalar.
Any such reduced dimensions are assumed to be dropped implicitly. The latter will become useful
in the context of the tensor power method in [6].

Linear Gaussian Latent Factor Model. When dealing with (2) our goal is to infer both A and
m. The main difference is that rather than observing z we have Az, hence all tensors are colored.
Moreover, we also need to deal with the terms arising from the additive noise €. This yields

Sl Z:Ml = T(’]T,A) (12)
Sy =My — S ® S — 0°1 = T(diag(r — %), 4, A) (13)
Sz :=M3 — 51 ® 51 ®S1 — 63[5 ® S — 63 [m1 ®1] (14)

=T (diag (7 — 37> 4 27°) , A, A, A)
S4:=My—51®51®51 051 —66[S2®51®S51]—63[S2® 53] —64[S3®51]  (15)
— 026 [S2 @ 1] —myG3[1 ® 1]
=T (diag (—67?4 +127% — Tr? + 7T) JAJAA, A)

Here we used the auxiliary statistics m; and m4. Denote by v the eigenvector with the smallest
eigenvalue of the covariance matrix of x. Then the auxiliary variables are defined as

mi :=E, [z (v,(x — E [x]))Q] = o?T(n, A) (16)

7n4::Em[@g(x——Ede)f}/3 _— 17)
These terms are used in a tensor power method to infer both A and 7 (Appendix A has a derivation).

Infinite Sparse Factor Analysis. Using the model of (3) it follows that z is a symmetric distribution
with mean 0 provided that p(y) has this property. From that it follows that the first and third order
moments and tensors vanish, i.e. S; = 0 and S3 = 0. We have the following statistics:

So =M, — 0?1 = T(C : diag(ﬂ'),/LA) e

54 :=M4 — 63 [SQ & SQ] - 0266 [52 & 1] - m463 [1 ® 1] = T(diag(f(w)), A7A7 A7 A) .
(19)

Here my is defined as in (17). Whenever p(y) in (3) is Gaussian, we have ¢ = 1 and f(7) = 7 — 72

Moreover, whenever p(y) follows the Laplace distribution, we have ¢ = 2 and f(7) = 247 — 1272,

Lemma 1 Any linear model of the form (2) or (3) with the property that € is symmetric and satisfies
E[e?] = E [€},,ss] and E[e'] = E [€&,,s] the same properties for y, will yield the same moments.

Proof This follows directly from the fact that z, € and y are independent and that the latter two
have zero mean and are symmetric. Hence the expectations carry through regardless of the actual
underlying distribution. |

4 Parameter Inference

Having derived symmetric tensors that contain both A and polynomials of 7, we need to separate
those two factors and the additive noise, as appropriate. In a nutshell the approach is as follows: we
first identify the noise floor using the assumption that the number of nonzero probabilities in 7 is
lower than the dimensionality of the data. Secondly, we use the noise-corrected second order tensor
to whiten the data. This is akin to methods used in ICA [12]. Finally, we perform power iterations
on the data to obtain S35 and Sy, or rather, their applications to data. Note that the eigenvalues in the

1
re-scaled tensors differ slightly since we use S; ? z directly rather than x.

Robust Tensor Power Method Our reasoning follows that of [6]. It is our goal to obtain an
orthogonal decomposition of the tensors .S; into an orthogonal matrix V' together with a set of
corresponding eigenvalues A such that S; = T'[diag()\),VT,...,V T]. This is accomplished by
generalizing the Rayleigh quotient and power iterations as described in [6, Algorithm 1]:

0« T[S,1,0,...,0]and 6 < ||0]| " 0. (20)



Algorithm 1 Excess Correlation Analysis for Linear-Gaussian model with IBP prior
Inputs: the moments M;, Mo, M3, M.

1: Infer K and o2: )
2: Optionally find a subspace R € R*X" with K < K’ by random projection.

Range (R) = Range (Ms — M7 ® M) and project down to R

3: Set 0'2 = >\min (MQ — M1 ® Ml)

4: Set Sy = (My — My ® My — 01) _ by truncating to eigenvalues larger than e
5: Set K = rank S5

6: Set W = UX ™2, where [U, %] = svd(S5)

7: Whitening: (best carried out by preprocessing z)

8: Set W3 :=T(S5, W, W, W)

9: Set W, := T(S4, W, W, W, W)
10: Tensor Power Method:
11: Compute generalized eigenvalues and vectors of Ws.
12: Keep all K; < K (eigenvalue, eigenvector) pairs (\;, v;) of W3
13: Deflate Wy with (\;, v;) forall ¢ < K;
14: Keep all K — K (eigenvalue, eigenvector) pairs (\;, v;) of deflated Wy
15: Reconstruction: With corresponding eigenvalues {\y, - - , Ak }, return the set A:

Y T
A{Z(W) vl.vZGA} 21)

3

where Z; = \/m; — n2 withm; = f~1(\;). f(7) = \_/% ifi € [K1] and f(7) = %
otherwise. (The proof of Equation (21) is provided in the Appendix.)

In a nutshell, we use a suitable number of random initialization [/, perform a few iterations (v)
and then proceed with the most promising candidate for another d iterations. The rationale for
picking the best among ! candidates is that we need a high probability guarantee that the selected
initialization is non-degenerate. After finding a good candidate and normalizing its length we deflate
(i.e. subtract) the term from the tensor S.

Excess Correlation Analysis (ECA) The algorithm for recovering A is shown in Algorithm 1.
We first present the method of inferring the number of latent features, K, which can be viewed as
the rank of the covariance matrix. An efficient way of avoiding eigendecomposition on a d X d
matrix is to find a low-rank approximation R € R%*X" such that K < K’ < d and R spans the
same space as the covariance matrix. One efficient way to find such matrix is to set R to be

R:(MQ—Ml XMl)@, (22)

where © € R4*X" is a random matrix with entries sampled independently from a standard normal.
This is described, e.g. by [20]. Since there is noise in the data, it is not possible that we get exactly K
non-zero eigenvalues with the remainder being constant at noise floor 2. An alternative strategy to
thresholding by o2 is to determine K by seeking the largest slope on the curve of sorted eigenvalues.

Next, we whiten the observations by multiplying data with W € R4*X_ This is computationally
efficient, since we can apply this directly to x, thus yielding third and fourth order tensors W3 and
W, of size k. Moreover, approximately factorizing S, is a consequence of the decomposition and
random projection techniques arising from [20].

To find the singular vectors of W3 and W, we use the robust tensor power method, as described
above. From the eigenvectors we found in the last step, A could be recovered with Equation 21. The
fact that this algorithm only needs projected tensors makes it very efficient. Streaming variants of
the robust tensor power method are subject of future research.

Further Details on the projected tensor power method. Explicitly calculating tensors
Moy, M3, My is not practical in high dimensional data. It may not even be desirable to compute
the projected variants of M3 and My, that is, W3 and W, (after suitable shifts). Instead, we can use



the analog of a kernel trick to simplify the tensor power iterations to

1 & _ wT & -1
WIT(M, 1L, Wu,... Wu)=— W' a; (z;, Wu) ™ = — s
(lva u, ) U’) mz x(x, u> m LL‘< .’I},U>

i=1 i=1

By using incomplete expansions memory complexity and storage are reduced to O(d) per term.
Moreover, precomputation is O(d?) and it can be accomplished in the first pass through the data.

5 Concentration of Measure Bounds

There exist a number of concentration of measure inequalities for specific statistical models using
rather specific moments [8]. In the following we derive a general tool for bounding such quantities,
both for the case where the statistics are bounded and for unbounded quantities alike. Our analysis
borrows from [3] for the bounded case, and from the average-median theorem, see e.g. [2].

5.1 Bounded Moments

We begin with the analysis for bounded moments. Denote by ¢ : X — F a set of statistics on X
and let ¢; be the [-times tensorial moments obtained from /.

$1() = @(x);  da(2) := ¢(2) ® P(z); di(2) := ¢(z) ® ... ® () (23)

In this case we can define inner products via

ki(z,7) == (&i(@), $u(a)) = Tlgu(x), 6(@), ..., 6(2")] = (6(x), 6(2"))' = K!(z,2")

as reductions of the statistics of order [ for a kernel k(z, z’) := (¢(x), ¢(z)). Finally, denote by
- 1 &
M = Epp(e) [$1(2)] and My = — Z} o) (24)
=

the expectation and empirical averages of ¢;. Note that these terms are identical to the statistics
used in [16] whenever a polynomial kernel is used. It is therefore not surprising that an analogous
concentration of measure inequality to the one proven by [3] holds:

Theorem 2 Assume that the sufficient statistics are bounded via ||¢(z)|| < R for all x € X. With
probability at most 1 — § the following guarantee holds:

[2+ v=2Tog?] R!

pr{ sup ‘T(Ml,u7~-- ,u)—T(Ml,u7--~ ,u)’ >el} < 0 where ¢; < T

wifjul|<1

Using Lemma 1 this means that we have concentration of measure immediately for the moments
S1,...5.Details are provided in the appendix. In particular, we need a chaining result (Lemma 4)
that allows us to compute bounds for products of terms efficiently. By utilizing an approach similar
to [8], overall guarantees for reconstruction accuracy can be derived.

5.2 Unbounded Moments

We are interested in proving concentration of the following four tensors in (13), (14), (15) and one
scalar in (27). Whenever the statistics are unbounded, concentration of moment bounds are less
trivial and require the use of subgaussian and gaussian inequalities [22]. We derive a bound for
fourth-order subgaussian random variables (previous work only derived up to third order bounds).
Lemma 5 and 6 has details on how to obtain such guarantees. We further get the bounds for the ten-
sors based on the concentration of moment in Lemma 7 and 8. Bounds for reconstruction accuracy
of our algorithm are provided. The full proof is in the Appendix.

Theorem 3 (Reconstruction Accuracy) Let i, [S2] be the k —th largest singular value of Sa. Define
Tmin = argmaX;c g1 | — 0.5], ey = argmax; ¢y m and @ = H{i:mgo.5} T H{i:m>0.5}(1 —




m;). Pick any d,¢ € (0, 1). There exists a polynomial poly(-) such that if sample size m statisfies

K
Al
1 S [52] l; || ||2 0,2 1 Trmax
Trmal'

1
m > poly| d, K, —,log(1/§), —, , , ) ;
=P y( € g< / ) T SK [52] SK [52] SK [SQ] \/ﬂ-min — Tmin? \/ﬂ—maz -

with probability greater than 1 — §, there is a permutation T on [K| such that the A returns by
Algorithm 1 satifies HAT(Z-) — A < (HAZH2 +va [SQ}) e foralli € [K].

6 Experiments

We evaluate the algorithm on a number of problems suitable for the two models of (2) and (3). The
problems are largely identical to those put forward in [18] in order to keep our results comparable
with a more traditional inference approach. We demonstrate that our algorithm is faster, simpler,
and achieves comparable or superior accuracy.

Synthetic data Our goal is to demonstrate the ability to recover latent structure of generated data.
Following [18] we generate images via linear noisy combinations of 6 x 6 templates. That is, we
use the binary additive model of (2). The goal is to recover both the above images and to assess their
respective presence in observed data. Using an additive noise variance of 02 = 0.5 we are able to
recover the original signal quite accurately (from left to right: true signal, signal inferred from 100
samples, signal inferred from 500 samples). Furthermore, as the second row indicates, our algorithm
also correctly infers the attributes present in the images.

1 | 1
0100 1100 0101 1001 0100 1100 0110 1010
[ & | u [
For a more quantitative evaluation we compared our results to the infinite variational algorithm

of [14]. The data is generated using ¢ € {0.1,0.2,0.3,0.4,0.5} and with sample size n €
{100, 200, 300, 400, 500}. Figure 1 shows that our algorithm is faster and comparatively accurate.
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Figure 1: Comparison to infinite variational approach. The first plot compares the test negative log
likelihood training on N = 500 samples with different o. The second plot shows the CPU time to
data size, N, between the two methods.

Image Source Recovery We repeated the same test using 100 photos from [18]. We first reduce
dimensionality on the data set by representing the images with 100 principal components and apply
our algorithm on the 100-dimensional dataset (see Algorithm 1 for details). Figure 2 shows the
result. We used 10 initial iterations 50 random seeds and 30 final iterations 50 in the Robust Power
Tensor Method. The total runtime was 0.2788s.



Figure 2: Results of modeling 100 images from
[18] of size 240 x 320 by model (2). Row
1: four sample images containing up to four
objects ($20 bill, Klein bottle, prehistoric han-
daxe, cellular phone). An object basically ap-
pears in the same location, but some small vari-
ation noise is generated because the items are
put into scene by hand; Row 2: Independent
attributes, as determined by infinite variational
inference of [14] (note, the results in [18] are
black and white only); Row 3: Independent at-
tributes, as determined by spectral IBP; Row 4:
Reconstruction of the images via spectral IBP.
The binary superscripts indicate the items iden-
tified in the image.

Original G

Spectral isFA

Figure 3: Recovery of the source matrix A in
model (3) when comparing MCMC sampling
and spectral methods. MCMC sampling re-
quired 1.72 seconds and yielded a Frobenius
distance ||A — Amcowm|p = 0.77. Our spec-
tral algorithm required 0.77 seconds to achieve
a distance [|A — Agpectral |l = 0.31.

TOXICANT STATIN FIBRATE AZOLE CONTROL

. Figure 4: Gene sig-
natures derived by
) the  spectral IBP.
They show that there
' are common hidden
causes in the observed
expression levels,
0 thus offering a con-
. siderably  simplified
, representation.
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Gene Expression Data  As a first sanity check of the feasibility of our model for (3), we generated
synthetic data using z € R with & = 4 sources and n = 500 samples, as shown in Figure 3.

For a more realistic analysis we used a microarray dataset. The data consisted of 587 mouse liver
samples detecting 8565 gene probes, available as dataset GSE2187 as part of NCBI's Gene Ex-
pression Omnibus www.ncbi.nlm.nih.gov/geo. There are four main types of treatments,
including Toxicant, Statin, Fibrate and Azole. Figure 4 shows the inferred latent factors arising from
expression levels of samples on 10 derived gene signatures. According to the result, the group of
fibrate-induced samples and a small group of toxicant-induced samples can be classified accurately
by the special patterns. Azole-induced samples have strong positive signals on gene signatures 4
and 8, while statin-induced samples have strong positive signals only on the 9 gene signatures.

Summary In this paper we introduced a spectral approach to inferring latent parameters in the
Indian Buffet Process. We derived tensorial moments for a number of models, provided an efficient
inference algorithm, concentration of measure theorems and reconstruction guarantees. All this is
backed up by experiments comparing spectral and MCMC methods.

We believe that this is a first step towards expanding spectral nonparametric tools beyond the
more common Dirichlet Process representations. Applications to more sophisticated models, larger
datasets and efficient implementations are subject for future work.


www.ncbi.nlm.nih.gov/geo
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A Derivation of Moments for the IBP (Section 3)

A.1 Moments for the Linear Gaussian Latent Feature Model

Key to the derivation is the fact that z and € are independent random variables, hence their expectations can be
taken independently.

Order 1 tensor: By using Equation (4), we have
S1:=My =E;[z] =E;[Az+ ¢] = AE. [z] = T'(7, A). (25)

To infer the number of latent variables k and deal with the noise term, we need to determine the rank of the
covariance matrix E; [(z — Ez[z]) ® (z — E;[z])]. Because there is additive noise, the smallest (d — K)
eigenvalues will not be exactly zero. Instead, they amount to the variance arising from e since

cov[Az + €] = AT cov[z] A + cov[e]. (26)

Consequently the smallest eigenvalues of the covariance matrix of x allow us to read off the variance o%: for
any normal vector v corresponding to the d — k smallest eigenvalues we have

E, |:(’UT (z—E [X}))Q] =o' A cov[z]Av + v cov]elv = o”. (27)

Order 2 tensor: For the second-order tensor, we plug in (6) and use independence of z and €. Linear terms in
€ vanish. Hence we get

My =E;[z®z]=T (E. [z®z],A,A)+021:T(7r®7r+diag(7r77r2),A,A)+J21
=S ® S1 + T (diag (7 — 7%) , A, A) + o°1. (28)

This yields the statement in Equation (13).
Order 3 tensor: As before, denote by v an eigenvector corresponding to the (d — k) smallest eigenvalues, i.e.
v' A = 0. We first define an auxiliary term

2 2
my :=E, [ac (’UT (z — E[Jc])) } =E, [ac (UT (A(z —7) + 5)) }
2
-E, [w (vTa) } = o>T(x, A). (29)
Since the Normal Distribution is symmetric, only even moments of e survive. Using (9), the third order
moments yield
M;=E;[t2Qz]=E.[Az®@ Az2® Az] + E. [63[Az Q@ € ® €] (30)
=TE:.[z02®2],4,A,A)+63(m1 ®1) €)Y
=51 ®51® 851+ 65 [S1 ® So] + T (diag (7 — 377 +2m)) , A, A, A) + &3 (m1 @ 1)

Thus, we get Equation (14).
Order 4 tensor: We obtain the fourth-order tensor by first calculating an auxiliary variable related to the ad-
ditive noise term

4 4
ms =E, [(UT (z — E, [a:])) } /3= E[(UTe) 1/3 = o*. (32)
Here the last equality followed from the isotropy of Gaussians. With Equation (10), the forth order moments
are
Mi=E;[zQzQz® x|

=E.[Az2Q Az Q@ Az®@ Az] + E. [Gs[Az2Q A2R Q€| + E[t®c® e €] (33)
=T(E.[2020202],4,A,A,A) +0°66[S2 @ 1] +0'63[1 ® 1] (34)

=51 ®51® 51 ®S51+ 66 [S2® 51 ®S1]+ G3[S2 x S2] + 64 (S5 ® S1]
+ T (diag (67" +127° —7n° + 7) , A, A A) + 0766 [S2 @ 1] + maG3 [1®1].  (35)

A.2 Moments for the Infinite Sparse Factor Analysis Model

Since both Y and e are symmetric and have zero mean, the odd order tensors vanish. That is M; = 0 and
M3 = 0. It suffices for us to focus on the even terms.
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Order 2 tensor: Using covariance matrix of (6) yields

My=E,[z®z] =T (E.[(209) ® (209)],G,G) +¢°1 (36)
:T((E [z®2] ®E, [y°]1),G,G) + 0’1 37
((ﬂ®7r+d1ag (7r—71' ))@Ey [yQ] 1,G7G) +021 (38)

T (Ey [y°] diag () ,G, G) + 01 = T (diag () , G, G) + 0”1, (39)

As before, the variance o of e can be inferred by Equation (27). Here we get Equation (18).
Order 4 tensor: With Equation (10) and E,, [y*] = 3, we have
Mi=E;[zQ2zQ1® x| (40)
=E.[Gz0y)0G(20y)0G(20y)®G (20 y)]
+E:[G[G(20y)®G(20y) Qe +E[e®@e®e®

=T(E.:[¢®20202 OE, [y']1,4,A4,4,A) + 0°G[S2 @ 1] + 063 [1 @ 1] (41)
=G5 [S2 ® S] + T (diag (Ey [y"] m — 3B, [y*]° Tr?) JALA A, A)

+0%66[Sa @ 1]+ 0'63[1®1) (42)
=65 [S2 ® Sa] + T (3 (mi — 77) , A, A, A, A) + 0°66 [S2 ® 1] + muG3 [1 ® 1] (43)

where m4 can be inferred by (17).

If the prior on Y is drawn from a Laplace distribution the model is called a ilCA. The lower-order moments are
similar to that of isFA, except for E, [y°] = 2 and E, [y*] = 24. Replacing these terms in Equation (39) and
(42) yields the claim.

B Concentration measure of bounded moments

B.1 Proof of the Moment Bound of Theorem 2
Denote by X the m-sample used in generating M. Moreover, denote by
2[X]:= sup |[T[Mi,u,---,u] —T[My,u,---,u (44)
uifluf <1

the largest deviation between empirical and expected moments, when applied to the test vectors u. Bounding
this quantity directly is desirable since it allows us to avoid having to derive pointwise bounds with regard to
M. We prove that =[X] is concentrated using McDiarmid’s bound [25]. Substituting single observations in
E[X] yields

IN

% [T [qﬁl(a:j)—d)l(x/),u,...u]] (45)
Lol + o] < 2R 6)

Plugging the bound of 2R /m into McDiarmid’s theorem shows that the random variable Z[ X is concentrated
for Pr{E[X] — Ex[E][X]] > €} < § with probability 6 < exp ( ) Solving the bound for e shows that

with probability at least 1 — § we have that ¢ < \/—21log d/mR".

2]~ E[(X\ {z5}) U {='}]]

IN

2R21

The next step is to bound the expectation of Z[X]. For this we exploit the ghost sample trick and the convexity
of expectations. This leads to the following:

Ex [E[X]] <Ex x- |: sup

wsfluf <1

T[Mlvuy"' au] 7T[Mlyu7"' 7u]’:|

:EGEX,X’ “ H ZGJ d)l 'TJ 7u} - T[Qﬁl(l';)th co ,U]) :|
u: <1
< 2 E,E - sup Za [Pi(z5),u u] 47)
S—LhsbhXx Uy« y
m wifjul|<1 ! n
2 25 ulk 2R!
<*EUEX (oF] d)l X S - X ) S - (48)
| 321 J 3) m vm




Here the first inequality follows from convexity of the argument. The subsequent equality is a consequence of
the fact that X and X' are drawn from the same distribution, hence a swapping permutation with the ghost-
sample leaves terms unchanged; The following inequality is an application of the triangle inequality. Next we
use the Cauchy-Schwartz inequality, convexity and last the fact that ||¢(x)|| < R. Combining both bounds

yields € < [2+ /=2log ] R'//m.
B.2 Tools for bounding tensors with bounded moments

To prove the guarantees for tensors, we rely on the triangle inequality on tensorial reductions

sup |T(A + B,u) — T(A" + B',u)| < sup |T(A,u) — T(A',u)| +sup |T(B,u) — T(B,u)| (49

and moreover, the fact that for products of bounded random variables the guarantees are additive, as stated in
the lemma below:

Lemma 4 Denote by f; random variables and by fAl their estimates. Moreover, assume that each of them is
bounded via | f;| < R; and |fi| < R; and

Pr{|E[f¢]ffi\ >6¢} < 6 (50)

In this case the product is bounded via
o110

Proof We prove the claim for two variables, say fi and f2. We have

’E[fllE[fﬂ - f1f2‘ < ‘(E[fll - fl)E[fﬂ‘ + ’f1(E[f2] - fz)) < e1Ry + Riea

€4

%, 51)

1=

> e} < Zéi where € =

with probability at least 1 — §; — d2, when applying the union bound over E[fi] — f1 and E[fa] — fo
respectively. Rewriting terms yields the claim for n = 2. To see the claim for n > 2 simply use the fact that
we can decompose the bound into a chain of inequalities involving exactly one difference, say E[f;] — f;

and n — 1 instances of E[f;] or f; respectively. We omit details since they are straightforward to prove (and
tedious).

C Proof of Equation (21)

For simplicity in the proof, in Equation (13) (14) (15), we define the diagonal coefficients for S; to be C; € R,
ie,Co=m—72,Cs=m—312+ 21 and Cy = m — Tn? + 1273 — 67?, so that

Sy = T(diag (C2), A, A), Ss=T(diag(Cs),A, A, A), Si=T(diag(Cs),A,A,A,A).

Following step 6 in Algorithm 1, we obtain whitening matrix W by doing svd on S2. Suppose the svd of matrix
T(diag (v/C2) ,A) = USY?V"  wehave S, = US'2VTVESY2UT = USU” and W = US™!/2, Using

the fact that S5 = T (diag (Cgc;?’/ 2)  diag (v/T3) A, diag (v/C3) A, diag (v/C3) A), we have
Ws = T (S5, W, W, W)
=T (diag (0302‘3/2) S 2uT sy Ty, s U T (ws Ay T, E’I/QUT(U21/2VT)>
-T (diag (0302‘3/2) VIvT, VT) . (52)

The diagonalized tensor W3, with some permutation 7 on [K] and s; € {£1}, has eigenvalues and eigenvec-
tors:

Xi = 803,052, vi = si(V'), ey, (53)

where C; ; representing the j-th element in C;. After obtaining v;, we multiply v; by (W*)T to rotate it back
to A; as describing in step 15 in Algorithm 1, where W = WTw)='w' = SY2UT, we get

(WT)T'UZ‘ = SiUEI/QVTeT(i) = siT(diag (\/ CQ) ,A)e.,.(i) = Si\/ CzyiAT@), (54)
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which yields A, ;) = % With the fact that s; = Cg,¢C;§/2A;1 from Equation (53), we have

i 2,i
T = (Cs,icg’il)
Plug in the definition of Cb, we get the scale factor for ¢ € [K1]. For A; which are recovered by conducting
tensor decomposition on Wy, we first examine

A WhHTe, =5 2whH T, (55)

X3

Wi =T (Ss, W, W, W, W) =T (diag (C1:C52) VT,V VT, VT) , (56)
and obtain
i =CuiC57, vi=si(V e (57)
By using the fact that s; = s; C’4,iC;,i2 ;" !and Equation (54), we have
W) T 4 _ )
Ay = WL 8 i = s(W) o =505 2 (W) Ty, Vi€ [Ki+1,--- K]

siv/Cai (CauCs ) A
(58)

Note that the value of 7; used to construct C; can be recovered by Equation (53) and (57) after obtaining \;.

D Reconstruction accuracy for Algorithm 1

In this section, we provides bounds for moments of linear gaussian latent feature model. The concentration
behavior is more complicated than that of the bounded moments in Theorem 2 due to the additive Gaussian
noise. Here we restate the model as

r=Az+e¢ (59

where z € R? is the observation, z € {0, 1}K is a binary vector indicating the possession of certain latent
vector and ¢ is gaussian noise drawn from N (0, o%1).

D.1 Concentration measure of unbounded moments

In order to utilize the bounds for gaussian random vectors, we need to subtract the term Az from z by op-
erating [M — M] . The bounds for observation generated by different z are examined separately. Let B =
{x1, 22, , T, } and, for a specific z; € {0,1}*, write B,, := {z € B : z = z;} and W, = |B,,| /| B| for
i€{0,1---2% — 1} and 2; = binary(i). Define the conditional moments to be

M., =Ez|lz=2], Mo, =E[zQz|z=2], Ms., =E[zQ®zQz|z=z],

My, =Ez@zQz®z|z=2],
while the empirical moments are

Ml,zi = |BZ,L.|71 Z T, MZ,zi = |BZ,L.|71 Z TR, ngzi = |Bzi|71 Z TRTQ T,

meBzi meBzi zEBzi

M4,z,; = |Bzi|_1 Z IRrRQr .

z€Bz;

Lemma 5 (Concentration of conditional empirical moments) With probability greater than 1 — 6, pick any
8 € (0,1) and any random matrix V€ R¥*" of rank r, the following guarantee holds
1. For the first-order moments, we have

K K
T (Vo — My, V)| <o vy, 2V IR @E/O + 2 2R/0) s oKy
2 2 Wa,n

2. For the second-order moments, we have
(3 )|
2
128 (rIn9 + In (2K+2/§ 4 (rin9 +1In (25+2/5
sUWvﬁ(¢ (rn9 +1n (2+2/5)) 4 ( (2572/9))

Wz, n WL, N

i

2 In (2K+1/§ 21n (2K+1/6§
“”2¢r+ Vrin (D) 2GR s ¢ (10 1)
2

Wy, N

i

+20 HVTMl,zi
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3. For the third-order moments, we have

~ 3 9K 3
HT (Ms,zi —Ms,zi,V,V,V)H <o |V|? (\/m&e [rIn13+ In(3-2K/§)] >
2

Wo, N

7

+ 30 HVTMM

) HVH§ (\/128(rln9+ln(3.2K+1/5)) N 4(T1n9+ln (3_2K+1/6))>

Wz, m Wa, N

i

+30 ||V My,

2 2\/rIn(3-2K/0) + 21In (3 - 2K /5
||V||2\/T+ rin(3-27/0) +2In(3-2%/9) Vie{0,1m2K—1}
2 Wz N

Z4

4. For the fourth-order moments, we have

Cm———]
2

L9K+1 2 LOK+1 3
SO‘4||V||;1 \/8192(r1n17+1n(4 2 /%)) +32(r1n17+ln(4 2 /0))

n2 n3

+ 40 HVTML%

Ve <\/10863[r1n13+ ln(4-2K/5)]3>

Wa, N

i

2 9K +1 4(rin9 +1In(4-25+1/§
oo |[vTan | v <\/128(T1n9+}n(4 2641/5)) 4 (rIn9 +In ( /8))
2 Wz; M Wz; M
3 2/rIn(4-2K/6) + 21In (4- 25 /6
+40HVTM1,zi |V|2\/T+ rin( uf}ﬁ n(4-29/9) Vie{0,1~~-2K—1},
2 2

Proof Here we only show the derivation of the fourth-order conditional moments. The other inequalities can
be found in [23]. Under the stated model, the fourth-order conditional moment can be expended as

My, =M., @ My, @ My, @ My, +0°66[Mi., @M., 1] +E[e®@e®@e® ¢,
which yields

sz,zi — My,
= (Y (- Min) ® (@5 — M) ® (35— M) @ (2 — Mis,) — o' Ss [1@ 1]
inn\ 2 j e j 2 j 2 j 2
+ Z (64 [ML%' ® (xj - Ml,z'i) ® ('TJ' - Mlvzi) ® (xj - MLZi)])
zGBzi
+ Z (66 [Miz, ® My, @ (5 — Miz,) ® (m5 — Miz,) — 021)])
zEBzi
+ Z G4 [Ma,z; @ My, @ My 2, @ (x5 — Mlzb)]) (60)
zEBzi

Suppose V' = ViV, is the SVD of V, where Vi € R4*" consists of orthonormal columns. With Yj,z; =
Vi" (x; — M,,,), applying triangle inequalities to Equation (60) yields

fr (- )

1
<[Vl pr D (We @Yz @Yz QY — 0 G3[1®1))

24

xGBZi 9
T 1
+4‘V Mlvzi 5 wZin ZB Yizi @ Yjozi @ Yj,z
€ z; 2
S 2 S
+ 6|V M| N ZGZB: (vj=e @ yje —0°1)|| +4|[RTM -, | oon GZB: Yizi|
z; 9 rebz;

2
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By using Lemma 13, we bound the first term by

1
Pr{ —— > Ui B Yjn D Yjz; OV, —Ble@e@e@e])

W, N
v zGBzi 2

2 3

S 04\/8192 (rln 17J;1n (2K/9)) n 32(rlnl7 +;n (2K/9)) <5 61)
n n

|

The other norm can be bounded by using the bounds for low-order conditional moments. We finish the proof
by adding the bounds for every term. By using inequalities for conditional moments, We get the bounds for
completed moments stated in the following Lemma.

Lemma 6 ( Lemma 6 in [23]; Concentration of empirical moments) For a fixed matrix V€ RE<",

(-]

<1+ 2K/26w) max HT (Mi,z - M., Ve, V)
2

2—|—2K/2maXHT (M@ZJ,V,-” ,V
zj

J H2€w

Vi€ [4],V) € {o,1~~-2K—1}

1
2
where €, = (Z (12)2] wzj)2> < L\/‘gl/é).

%5

D.2 Estimation of o, S5, S3, S,

Note that we have 02 = Ain [M2 — M1 ® M1] = cx[M2 — My ® M;], where ; [M] denoting the ¢t —
th singular value of matrix M which is defined in Theorem 3. Here we define 5”2, K to be the best rank &
approximation of M, — My ® My — 621, which is the truncated matrix S in Algorithm 1. S; denotes the
empirical tensors derived from summation of MZ and &. S; denotes the theoretical values.

Lemma 7 (Accuracy of 0%, o* and M )

~ ~ 2 ~
?| < |0tz = e 2+HM1—M1 2+2HM1‘M1 I, 62)
&t — — %" + 207 |62 — 0| (63)
~ ~ ~ 2 ~
|92 = 52 2§4(HM2—M2 | = 2|+ 280, Ml—MIHQ) (64)

Proof

For the first order tensor, the inequality holds trivially due to the guarantees for HM 1 — Mi|| . Next we bound

the difference in variance estimates. Using the fact that differences in the k-th eigenvalues are bounded by the
matrix norm of the difference we have that

62— | = ‘Ck [M2—M1®M1] — sp[Ma2 — M ®M1]‘ (65)
< H[M2 _m@z\zl] — M - My@ M| (66)

~ N 2 ~
< HszM2 2+HM17M1 2+2HM17M1 ]l 67)

The second inequality follows the Weyl’s inequality and the last inequality is obtained by the triangle inequality.
For estimation of o4,

~d 2)2+202(&2_02)| < |&2_02’2+202|&2_02|. (68)
For the last claimed inequality, with Weyl’s inequality,
‘ »§2,k - (MQ — M, ® My — &21)H < Gr+1 [Mz — My ® M, — 521] (69)
2
= H§k+1 [MQ — My ® M — 621] — Ghy1 [M2 — My ® My — 0?1] ) (70)
< || W~ M1 @ 2 - 671 (M — My @ My - 071)| (71)
2
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, which yields
ngk — S

< HS2k — (MQ — My ® M — §21)
2

‘ 2

MQ—M1®M1—&21—(MQ—M1®M1—021)H (72)
2

+

~ N 2
< (-, o~ 30 2|

My =+ 167 02|) (73)

. ) , A
<4 (HM2 = M|+ |30 = a4+ 20 || 7 - Mle) _ .
n

The inequalities for o can be used for bounding the tensors Sz, S3 and Sy, which will be shown next, and the
inequality for Sa 5 will be used in bounding whitened tensor in Section D.3.

Lemma 8 (Accuracy of Sa, Ss and S4) For a fixed matrix V' € R4XK
2

HT (5'2 — 52,V,V)

e

2 + HT (Ml B MI’V)

2

27 V), |7 (30 - 20, V) |+ IVIE |6 - o) 75)
|7 (8 = s vvv)],
< || (3t = aa, v vV ||+ (|7 (8 = 2, V) | 40T 0, VL) = 1 O,

wa( [ (31 -2, V) | 7 (52 = v+ I 000l 7 (82 - 52020
n HT (Ml - Ml,V)H2 ||T(SQ,V,V)H2) +3[V2 (,&2 — o HT (Ml - Ml,v)H2
w0t | (31 - 30,V +16* = o 1T a1, V)L o

HT (34 — S, V,VV, v)

2

< |z (3t = 2t vvv )|+ (7 (50 - 2,V i vl = i, v

+6]|7 (82— 52,V V) || 1T (4, V)IE + 6( |7 (82 = $2,viV)||, +11T (82,2 V)Hg)
(21 oty (ot 0+ (3 =3 ) (5 - o)
+2|7 (82— sV, V)| ||T<sz,wv>||2) +6|VII3 (02 |7 (8252w v )|+

+16% = o (HT (SQ ~ 5, V,V) HQ T (S2, V,V)||2) > +3]6t = ot VI

T(M1 —Ml,V)

T, v,

T(S‘g — 55, V,V, V)H2

2

+4( HT (Ss — 55, V,V, V)

+ 1T (85, V.V V)l |7 (3 _MlvV)H2) )

Proof To bound the second order tensor, we use the inequality for bounding 6 in Lemma 7 and get
|7 (82 v) =7 (52, v V)|
2

< HT (M2 — M.V, V) H2 + HT ((Ml ~ M) ® (N — M), MV) H2 (78)

42 HT (M1 ® (Ny — M), V, V)‘

L HIVIE* -

< |7 (32 = a1z, v, v') 20T O, V)l |1 (8 - a0, vV

n HT (Ml — M.V, v)
2 2
+ V|2 |6% - o?|. (79)
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Similarly, for 5‘3, we have that
HT (s},,v,v, V) T (85, V,V, V)H2
< |7 (3 = Mo, v v V) |+ | (30 @ 30 @ M - @ My @ M VLV V) |
+3 HT (S‘l ® s — S ®52,V7V,V)H2 +3 HT ((&21\2/1 - 02M1) ® 1,V,V7V)H2 . @®80)
Note that the second term can be written as
Mi® My ® My — M1 ® M1 ® My
= (M1 - Ml) ® (Ml - Ml) ® (M1 - Ml)
+ 63 [Ml ® (Ml - M1) ® (Ml - Ml)] + 63 [Ml ® M ® (Ml - Ml)] . (81)
Using the same expansion trick, the third term becomes
S1® 82— 81 ®82= (51 —S1)®(S2 — S2) + 51 @ (S2 — S2) + (S1 — S1) @ So. (82)

Using triangle inequality, the bound for Equation (81) is
HT (Ml ® My ® My — My @ My ®M17V7V7V)H
2

< | (5 - Ml,V)Hz + 3T (M1, V), |7 (81 - Ml’V)HZ

+3T (M, V)|I3

(o),
and the bound for Equation (82) is
HT (5'1 ®8 -5 ® S2, V, V, V) Hz

< |7 (8 -5V |7 (82 = 8w |+ 1T (S0, V)

r(s-sr)]
+HT (5’1—Sl,V)H2||T(S2,V,V)\|2 (84)
|7 (6% = o2 ) @1,V V)

< I3 (

5 — | IT (M, V)]l5)
(85)

ol - (),

By combining all the inequalities, we get the bound for S3. The bound for S4 can be derived by similar
procedure. |

To complete the bounds, we need to examine the bounds for the whitening matrix and also the whitened tensors.

D.3 Properties with whitening matrix

Note that in Algorithm 1 we have W3 := T (S5, W, W, W), Wy := T (S4, W, W, W, W). To bound || W3|| and
|[W4||, we use the fact stated in Section C that these tensor are diagonalized so that finding the norm is actually
equivalent to finding the largest eigenvalue of 7'(Ss, W, W, W) and T'(S4, W, W, W, W), respectively. Note
that in Algorithm 1, the first K; eigenvectors and their corresponding eigenvalues are solved by conducting
tensor decomposition on W3, while the others are extracted from Wy. With Equation (53) and (57),

—2m;+1 e
i if i < K3

N=Q Ve . (86)
it otherwise.

As we have mentioned previously, eigenvalues of S3 degenerate to zero at the value of 7; = 0.5 while eigenval-
ues of Sy degenerate to zero at the value of m; ~ 0.2,0.8. So here we define thresholds, 7+, and 7rh,,,,.,,
such that

2T Thgguwn +1 —2MTh., +1

=1,

-1 (87)
2 2
\/ﬂ'Thdown T hgown TThup — TThy,,
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In other words, we solve the latent factors by the third-order moments if m; < 7Tn,,,,, OF Ti > TTh,,
otherwise we turn to the fourth-order moments. Since \; is a symmetric function of 7; on the m; = 0.5 axis for
i € [K], we set Trn = TThy,,,, to simplify the proof. Here we have

1= LJFQ §|/\i\S7T7+ ifi < K3 (88)
\VTTh — Ty, Tmin — 71'72,”'"
2
— 1
—2< N\ < 6m7n = 6mrn + 1 ~ —1 otherwise, (89)

TTh = Ty,
where Tmin = argmax; g |7ri — 0.5|. Since W3 and W are diagonalized tensor, we have that
—2Tmin + 1

3 )
V Tmin — Tyin

Next, in order to bound [VAVZ - WZ}, we need to consider the bounds using empirical whitening matrix. Let

[Wsll, < [Wall, < 2. (90)

W denotes the empirical whitening matrix in our algorithm. Here we define W := W(WSQW)_% and

€5y 1= HS'Q E— S2 H2 /Sk [S2] in order to use the bounds for whitening matrix stated in lemma 10 in [23].

Lemma 9 (Lemma 10 in [23]) Assume €s, < 1/3. We have

- 1
LW 'SeW=1, 2. .W <
2 (1 - 652)§ [SQ]
R N\1/2 R N\ -1/2
3. H (WSQW) 1| <1.5es,, H (WSQW) 1| < 1.5es,
2 2
H(VAV)Tzﬁldiag(W—71'2)1/2 < /1 + 1.5€s,,
2
H(Vv — W) Adiag(r — 73)2|| < \/TF 1.5¢s,.
2
Using Lemma 9, we can complete the bounds for empirical whitened tensors.
Lemma 10 Assume es, < 1/3. Then
2 P 2 % 2 -2 min 1
Wo =W < |7 (85— 85,0, W, W) 4+3——tmintl
2 2 Tmin — Tr'rznin
W4 - W4H < HT (54 — §4, W,W, W, W) H + 10
2 2

Proof Here we only show the second inequality, the first one can be derived with similar procedure.
Hm - W4H - HT(S4, W, W, W, W) — T (34, W,W LW, W) H
2 2

< HT(S4, W, W, W, W) = T (S, W, W, W, 1) H2 + HT (81— S0, W, W, W, W)

2

on
For the first term, using Lemma 9 and Equation (90), we have:
HT(S4,W, W, W, W) —T (54,17[/, W, WW) H2
< |7 (0 = wiir ) + |7 (S0, W, W = W v, W) H2
+ | (s woww —ww)|| |7 (ss wowwow = w)|| 92)
< T (50, W, W, W, W), [[ (0T sa10) 2 1 (H(WTS2W)1/2H2 ot | R sy 2 Z)
<|T (Sas W, W, W, W)]|, - (1.5€s,) (1 + L5es,)* + -+ (1 + Lbes,) +1) <5-2 =10 (93)
n
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D.4 Reconstruction analysis

Before putting everything together, we utilize the eigendecomposition analysis in Appendix C.7 of [23]. First,
we consider the case where A; is recovered by applying tensor decomposition on W, i.e., for i < K. Note

that, in Algorithm 1, Z; = \/m; — 72. Following the approached in [23], define

1 HW3 B WT’H
Vs 1= €Sy = T
2maxie(r,] /(m — 72)VeK (%]) V83

1 HW4 - W4H
754 = 2 K+1 ’ 654 = N
2max;s i, \/(m — 73)V eK( 5 ) YS4

Lemma 11 (Reconstruction Accuracy in [25]) Assume €s, < 1/3, €s, < 1/4andes, < 1/4, and e1 < 1/3.
With k [S2] := 1 [S2] /sk [Sa), there exists a permutation 7 on [K| such that

A = Ai]| < 311 Ano v + 208202 o, Vi € [K]
where
oo {(5.5552 +7esy) [V Tmin — T € K]
’ 13.75€s, + 17.5€g, otherwise
((6.875»@ [Sa]/2 + 2) €5y + (8.755 [S2]"2 + Y3/ Tomin — nzm.n) 653)
€1, = / (’Yss Tmin — WZm) ifielKi],

2.5 ((6.875& [S2]/% + 2) €s, + (8.75#; [S2]% + 0.4754) 654) /s, otherwise

D.5 Proof of Theorem 3

The proof can be accomplished by finding out the sufficient sample size that satisfies the assumption in Lemma

11. First, assume that n > Ck log(1/d) to make sure £, < 1. In this proof, we use ¢, c1, ¢z, -+ to denote
some positive constant. By Lemma 5 and 6, with probability greater than 1 — §, bounds for first and second

-order moments are
d + log (2% /6) ul 2K log (1/5)
o taX My = o9
. k d+log (2%/6 k
HM2_M2H o <02 /d+lo%(2 /9) , 2+ oig( /)+U /d+1o§;(2 /5)) ©3)
2 ™ ™ ™

K K
fa (Z 1412 +02> 2K log (1/6) (96)
=1

n

K k
<ca (2 (Z | A2 + 02> \/ d+ loig’ (24/9) + a2d+ lo% (2 /5)> 97)
=1 ™ ™

Using Lemma 7, we derive the bound for ¢ and approximate rank-k second-order tensor as

{5~ [ -5.}

at g d+log (2%/6
o oS ) (BB ptzbste
im1 ™ ™
d+log (20) & 2K log (1/3)
+ 8¢t <a\/ EEREETT LS Ay ) Y )
™ n

=1

d+log (2¢/5) | < 2K log (1/6
+ 81 M, (a\/(’;ﬁ”+2mi|2 i”)> ©8)

=1

K k
<e <Z HAZHE +02> < d + log (2%/96) " d+1o% (2 /5)> . (99)
i=1

™ ™

Ml —M1 SC
2
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To ensure that

&2—02’ Vi ®
max{ —————, <e3—2—— <1/3, 100
X{ (52 [ S s <Y o

we set the sample size as

2

12 [ & 2 2
v [2] (;nmuzw )

K
1/2 2 2
e [ [ (£ 143+ o)
= Z V3, TSk [S2] €

T V3, TSk [Sa2] €

+

To examine the moments after multiplying whitening matrix W, by Lemma 9,

W| <\/1.5/ ¢k [S2] (101)

2
< HWTAdiag (7r — 7r2)1/2H A Tmin — T2, (102)
2

max HT (Ml,zi,W>

z;€[2K]
<15/ (mmin —72,1,) (103)
LWL W] <1. in — T 2 (1.
211161?2)[((] HT (MQ,z“W, W) H _1 5/ (7Tmzn ﬂ-mzn) +o (1 5/§K [SQ]) (104)
z; ! i j < . min 2 i 8/
Zirrglg)}({] HT (Mg, S W, W, W) H < (1 5/ (7r ﬂmm))
13015/ (mmin — 72,.,) (15/5x¢ [S2]) (105)
N e A 2.25
z; < . min 2 i ? 2
max |7 (Maeis W, W, W W) | < (15/ (Romin = i) + 60 R v
+ 30 (1.5 /5K [S2])? (106)
Using Lemma 6,
~ A K+1 2K /1§ 1 2K ] 1/6
|7 (31 = M, W) || <ea—2— Tloe28/9) 08 1/9) (197,
Sk [S2] ™ V min = T2 n
. L 2 K +log (2K /8) K +log (25/6
| (12— v W) | <0 +log 0/0) | K +los (27/7)
Sk [S2] n n
1 2K] 1/6
‘el - og (1/6)
V Tmin — aninQ{ [SQ} n
+eg 1 n 1 Klog (1/6) (108)
Sk [S2] Tmin — T2y n
. . . . 3 K 3
HT(M?,—M37W,W7W)HSC4 o 32\/(K+10%(2 /8))
Sk [S2] / ™
o’ K +log (2K/6) = K +1log (2% /5)
+ca — + =
SK [SQ] Tmin — ﬂ-?nin ™ ™
K +1 2K /1§
b @ +lo @X/5)
5x [S2)'? (Tomin — 72,1,) ™
2 1 Klog(1/§
tes o n - og (1/6)
Sk [S2] v/ Tmin — Tir, (Tmin = T2in) n
(109)
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™ ™

HT(Z\ZM _M4,,W,W,W,W>H <C4<KT4 . (KJrlOig (2K/6)> <K+log (2K/6)>

o \/ (K + log (25 /)"

+c ~
4 - [5,2]3/2 n
o? K +log (2K/6) K +log (2%/9)
+ cq -
Sk [S2] m mn
K +1 2K /5
b (K Re D
Sk [S2] ™
o* o? Klog(1/6)
. 110
o (<K [S2] T [52]> n (10

With Lemma 8 and 10,
\F@—&WWmSWOHWhWWN+W@“ﬂﬂ@ﬁ
T (31— a0, W)+

HT(S} — S5, W, W, W) H < HT (M3 = M, W, W, W) H2

3 3
+ ([ (i amw)| + Eme) — (ee)
7Tmaac_77maa: \/m

Tmax

+2 & —a*| a1

Tmaz — Tmax

w37 (3t = a3 |7 (82 = a0 ) |+ o=z 1 (30 - o)
+ |7 (3 = a0, )| ﬂi:;”f:l )+<K4§2](&z_aﬂHT(Ml_Ml,w)HQ
+0’2HT(M17M1, )H e ”mf”ﬂ > (112)

\/—
71/26 we set

Plug this in Lemma 10, we get the overall bounds for HWg - W3H To getes, < c5 5]

X 2
2 Al o

S1 [52] i=1 g 1 Tmax
SK [Sg]’ SK [SQ] ’ SK [SZ]7 \/Wmin — Tmin?2 ’ \/ﬂ'maz - ﬂ—?na:t

1 1
n > poly | d, K, =,1log(1/6), =,
€ T

(113)

Similarly, for A; reconstructed by W4, n should be set to

Lis 2
Ai
o [S3] 2 Az

w %] xS xS | (114)

n> poly | d. K, log(1/0), =,
™

€. The overall bounds can be obtained by Equation 113, 114 and Lemma 11.

s VF
in order to eg, < CGW

E Tail Inequalities
Here we derive the tail inequality for the fourth-order subgaussian random tensor.
Lemma 12 Let x1,x2,- - , Ty be i.i.d. random variables such that

E; [exp (nz;)] < exp (fyn2/2) VneR (115)
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Then for any t > 0 and %t < i,

1, 4 1 6412 ( 167215) 1 _
Pr|— z, — B lzg|) >y 8y — <e (116)
L3 m ) /5 ) i
1 812 vt 1 -
Pr|= " (xf — Ei[27]) < —v (27+ )ﬁ <e, (117)
n— n? n (1 + 7;)
) . : : : 1 l-o
Proof We use Chernoff’s bounding method to derive the inequality. For n < Gegr Setn = 57 for some
o > 0, we have
E; [exp(nzi)] = 1+ nE; [z]] + 77/ (exp (n€’) — 1) E; [1{z?>52}} deé? (118)
o ;
<1+ nE; [2i] + 27;/0 (exp (n€’) — 1) exp (2» 2ede (119)
<1+nE; [mf] + 4n (/ € exp (_—06) de — / €exp <_—E) de) (120)
0 2y 0 2y
1
<1+nE; [z}] +4n (472 (—2 - 1)) (121)
g
< exp (nEi [xi] +4n ( (— - 1))) (122)
o?
Th dli the fact that Pr [z} > 2] < Eloelalzil)l < goPlre®/2) _ — =) witha =
e second line uses the fact that Pr {x; > €*| < ep(0e1/?) = Zoxp(ac/?) = exp (—g55 ) withor =

E [exp (nil (ac;l —E; [xﬂ)>:| = ﬁ E; [exp (n (yﬁi1 —E; [xﬂ))] (123)

< exp (16717)72 (% - 1)) (124)

With Chernoff’s inequality, for 0 < n < ﬁ and € > 0,

Lo :
Pr - ; (:Cil - E; [xf]) > 6:| < exp (—nne + 16n7y° (; — 1)) . (125)

Zando =1 — %, for ”’;t < %, we get the first inequality. Forn < 0 and € > 0,

Setting n = 275

n

B :
Pr - ; (36;1 - E; [mf]) < —e:| < exp (nne + 16nny° (p - 1)) . (126)

Setting 0 = 1 + ~t gives the claimed inequality.

|
Lemma 13 (Fourth-order normal random vectors). Let y1,y2, - - - yn € R? be i.i.d. N(0, I') random vectors.
For e € (0,1/4) and § € (0,1),

1 & 1
= @Yy ey —Ele®c®e®d| > ———e€qun| <20 (127)
n = ) 1 —4eo
where
20481In ((1 4 2/€0)4/5)? 81n (14 2/e0)4/6)?
€cotn = 3 = (128)

n
Proof We follow the approach of [22]. Let Y := 2 3~ 4, @y @y ®y:i—E [e1 ® €1 ® €1 @ €1]. By [28], there
i=1
exists @ C S := {a € R? : |la||, = 1} with cardinality at most (1 + 2¢)? such that Voo € S*"'3¢ € Q
la — qll, < eo. Since, for any ¢ € Q, y; q is distributed as N (0, 1), with union bounds and Lemma 12, for
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JPri3¢e QT (Y, q,¢,9,9)| > €ep,t,n] < 25. So we assume with probability greater than 1 — 26, Vg € @,
T (Y,q,9,q,q)| < €cq,t.n- Let g = argmax,, cga—1 |T (Y, o, @, @, )|, we have
IYl, =T (Y, a, o, o, vo)| (129)
<min|T(Y,¢,4,¢,9)| + T (Y, a0 = 4,4, ¢, 9)| + T (Y, 0, 0 = 4,4, 9)|

+ |T (Y, o, o, 0 — q,q)| + |T (Y, cvo, 0, o, o — q)| (130)
< min T (Y,4,0,4,0)| + 4]0 ~ al[[ Y] (131)
<ecotn +deo [V, (132)
which yields
HYMS—QLffmm (133)
1 —4eo
|
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