
Learning to See by Moving:
Self-supervising 3D Scene Representations for

Perception, Control, and Visual Reasoning
Hsiao-Yu Fish Tung

March 2021
CMU-ML-21-100

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Katerina Fragkiadaki, Chair

Tom Mitchell
Chris Atkeson

Jitendra Malik (Berkeley)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2021 Hsiao-Yu Fish Tung



Keywords: Embodied vision, Geometry-aware Recurrent Networks (GRNNs), Self-supervised
learning, Spatial reasoning, Language Grounding, Intuitive Physics, Concept Learning, Manipu-
lation



For my Family



iv



Abstract
We propose learning frameworks for artificial agents to learn several aspects of

visual common sense (instantiate and retrieve object concepts, reason about space
and 3D geometry, manipulate diverse objects) while moving and interacting with
3D environments. Current state-of-the-art visual systems can achieve human-level
object recognition performance on Internet photos, but their performance degrades
drastically when applied to videos captured by a moving camera. The performance
gap is due to the great difference in the image statistics: in Internet photos, objects
are centered, unoccluded, in canonical scales and poses; in photos captured by mo-
bile agents, objects come in a wide variety of scales, poses, locations, and occlusion
configurations. How can machines learn to see without relying upon humans to de-
tect and center the interesting content in images and videos?

We explore neural architectures and training schemes for learning visual scene
representations that can work under a moving camera, and can exploit the moving
camera viewpoint to self-improve without human annotations. This thesis re-visits
the paradigm of vision as inference of a 3D scene representation, also known as
“vision as inverse graphics”. Nevertheless, instead of inferring explicit 3D repre-
sentations such as meshes or pointclouds, we infer learnable 3D feature representa-
tions from RGB or RGBD inputs. The feature representations can be optimized by
training end-to-end with many task objectives, including object detection, view pre-
diction, object dynamics prediction, and object manipulation. The proposed models
integrate recent advances in Simultaneous Localization And Mapping (SLAM) and
deep learning. Similar to SLAM, our model generates stable 3D scene represen-
tations that retain information regarding size, shape, and spatial arrangements of
objects, which permit object permanence to emerge across camera viewpoints, de-
spite changes in the field of view. Different from SLAM, which constructs a 3D
point cloud map of a scene by piecing together multi-view images, our model learns
to infer a complete 3D scene feature map even from a single view. The feature map
encodes task-relevant semantic information, much more than just object occupancy
or 3D surfaces.

We demonstrate the effectiveness of the proposed differentiable 2D-to-3D fea-
ture mapping in multiple tasks, including detecting objects in 3D, predicting 3D ob-
ject interactions, manipulating diverse objects, recognizing visual concepts, ground-
ing language expressions, and generating 3D scenes that comply with a language
utterance. We show the proposed models can self-supervise themselves using unla-
belled data and outperform supervised models in the tasks above.
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Chapter 1

Introduction

The embodiment hypothesis is the idea that intelligence emerges in the interaction of an agent
with an environment [116]. While this is an intriguing hypothesis with compelling evidence from
psychological experiments [7, 41, 79], this statement has not been properly linked to results
from the machine learning side. Can the fact that we are moving agents and we are embodied
in a three-dimensional space affects the way we learn and perceive the world? In this thesis,
we attempt to answer this question by creating artificial agents that can develop human-like
intelligence through their interactions with the 3D world.

The goal of the thesis is to build machines that can work with and can learn from the data
captured by an embodied agent that physically moves in 3D scenes. This thesis focuses on
embodied agents that can learn and perceive the world from their visual inputs. When the agents
begin to move around, they start to observe sequences of images of the 3D environment around
them. In Figure 1.1, we show what an actual embodied agent – a baby – actually sees. The
images are less well-framed compared to ones we can find on the Internet. Many images do not
even have a target object in the center! However, somehow from these images, the baby can
effortlessly recognize the objects, their 3D geometry and properties. Later in his/her childhood,
the baby also understands how objects can interact with the other, what tasks it can achieve using
these objects, and how it can physically move these objects to complete the tasks.

Building embodied agents that can see, act, reason and continue to improve is challenging
since there are multiple crucial modules, e.g., visual/motor/cognitive modules, and these mod-
ules are interconnected and can change over time. To start with, our research strategy is to build
up an initial vision model that can start parsing the visual data into useful information that might
be beneficial for building other modules. There are three key problems we must address: (1)
How can we get an initial vision model that can extract useful information about the scene from
images? What should be the representations of the scene? (2) How can the agents use the scene
representations to improve other modules regarding acting, reasoning and language understand-
ing? (3) How can the development in these modules further improve the agents’ visual perception
so the whole system can continue to improve?

Current 2D Convolutional Neural Networks (CNNs), although prevalent in visual recogni-
tion, are not suitable for building visual perception for these moving agents. While these models
perform well In recognizing objects in internet photos where objects are carefully-centered and
scaled, their performance drops significantly on these noisy and shaky first-person videos where
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Figure 1.1: What a baby sees when moving. As the baby moves around in the scene, this can
cause objects to come in and out of the field of view, to change size dramatically. There are a
lot of occlusions and objects are usually not in the center of the images. Often, we cannot hardly
tell what the objects are based on a single image (see the last frame). Although the video is so
noisy, somehow the baby can make sense of it. The baby can do a lot things like navigating or
playing, and can learn a lot things from this type of noisy inputs. In this thesis, we study how we
can build artificial agents that can do the same.

objects are present in a wide variety of scales, poses, locations, occlusion configurations. Ad-
ditionally, simply recognizing the objects in each individual frame is not enough for the agent
to have a holistic understanding of the scene! To be able to interpret and act in the scene, it is
critical that the embodied agents can integrate information across frames.

The proposed research provides solutions for building these embodied agents’ perceptual
capabilities that will empower these agents to see, act, reason, and understand about the physical
world more like humans. The first module we will explore is:

• Perception: How can objects, scenes, their 3D geometry and semantics emerge from raw
images captured by the moving agents?

In this dissertation, we propose novel neural network architectures that improves the way neural
networks can learn consistent and structured scene representations from the videos captured by a
moving agent. Our key idea is to stabilize the frames captured under different camera poses and
fuse them to a joint 3D space to construct a stable 3D scene representation. To demonstrate the
importance of stabilizing the frames and maintaining a 3D scene representation, we will show
how the representation can further improve the following modules:

• Action + Physics: Once the agent can parse the scene into objects, how does it learn to
interact with these objects? How does it learn how objects can interact with one another?
Can the agent identify the plausibility of an object configuration?

• Concept learning: Intelligence is not only about detecting and interacting with individ-
ual objects, intelligence is also about constructing memory and making association and
analogy between similar instances and configurations. How can the model learn the as-
sociation? How can the model use the association to bootstrap its learning in language
acquisition and manipulation?

• Language understanding: Language is a critical media for humans to think and commu-
nicate. How can the learned module affect the way we learn and understand language?
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(b) Geometry-Aware Recurrent Networks(a) Recurrent Networks with 2D CNNs

Figure 1.2: Geometry-Aware Recurrent Networks (GRNNs) improve the way neural networks
can aggregate information across video frames captured under camera motion. During camera
motion, objects and their features in the 2D feature maps might present in different locations
in the 2D pixel space. GRNNs learn to map these features in different pixel locations to the
same location in the 3D feature maps by explicitly estimating the relative camera poses between
frames and moving the features according the the camera pose estimation.

1.1 Perception: Learning to see a stable world with objects

To integrate and extract information from the video captured by the embodied agent, my
solution is to build a 2D-to-3D inverse-graphics engine that can map the video frames into stable
3D representations of the physical scene. Having stable visual representations that do not change
during camera motion is beneficial for general scene understanding and reasoning, since the
agent can now focus on the change in the scene content as opposed to the change in the camera
viewpoints. Aside from stability, our representations can explicitly model objects or scenes as
entities living in a three dimensional space, which is critical for planning and manipulation in the
3D world.

Current deep Convolutional Neural Networks (CNNs) are actually not suitable for generating
stable and persistent representations from these noisy and shaky video frames from the moving
agents. In these videos, the pixel values can change rapidly from frame to frame. Since CNNs
directly operate in the pixel space, the activation maps of CNNs activations will fluctuate with the
change in the pixel space. In Figure 1.2 (a), we visualize such change.When the camera moves,
the activation maps of CNNs also show the objects as moving, even though the objects remains
static; when the camera zooms-in and out, they show the objects as becoming larger and smaller;
when the camera moves away or a person steps in front of an object, its detection disappears and
it is replaced by the objects detected in the new visual frame. CNNs neglect the basic principles
of object permanence and spatial awareness that a one-year-old child has developed. The lack
of object permanence is particularly problematic for the embodied agent to integrate information
over time, to piece together a complete story of a video scene.
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To construct the stable representations of a physical scene, we propose Geometry-Aware
Recurrent Networks (GRNNs) [136] that disentangle camera motions from scene appearances
given an RGB or RGB-D video stream and integrate them into a persistent 3D feature map. To
achieve such disentanglement, GRNNs learn to estimate camera motion between views and use
the estimated camera motion to explicitly move and fuse the features in 3D, similar to many
SLAM (Simultaneous Localization and Mapping) methods [84]. The operation ensures features
coming from similar 3D location in the real world end up being aggregated and stored in similar
3D location in the 3D feature map. Such operation is implemented as differentiable geometry
operations that enables the model to be trained in an end-to-end fashion given a final end task.
In Figure 1.2(b), we show how the geometry operations can improve the way neural networks
integrate information across frames. Although an object can present in different locations in
the 2D pixel space, after the operations, the features for the objects will be mapped to the same
location in the 3D feature map.

GRNNs are network architectures that are suitable for the embodied agent to integrate ob-
servations across views, but how do we learn their weights? To learn the 3D representation of
GRNNs, we propose to train them in a self-supervised manner using the images and the
corresponding camera poses collected by an embodied agent while moving, which enforces
the model to learn to complete the missing information from a single view. Using the data as
supervision, GRNN learns to estimate camera motion between frames. Additionally, the agent
learns to predict, from a single image, how a scene looks from different viewpoints, which en-
forces the agent to learn to imagine and complete the missing information in the images. We
empirically show GRNNs can predict correctly how an occluded object looks from another view
and outperform previous state-of-the-art methods that do not explicitly use geometric opera-
tions. The learning component greatly differentiate our model from existing SLAM methods
[84] which aim to construct a 3D point cloud map of a scene by piecing together multi-view
images. Our model can learn to infer a complete 3D scene feature map even from a single view!
In addition, the feature map can encode task-relevant semantic information, much more than just
object occupancy or 3D surfaces.

[Seeing objects and their shapes] To understand a visual scene, one critical step is to detect
objects present in the scene and recognize their 3D shapes. Building upon the learned self-
supervised 3D scene representations, we further introduce modules that learn to detect objects
in the scene. Since the 3D scene feature maps are complete, i.e., objects features are complete
despite occlusions or camera viewpoints, learning a detector in this 3D scene feature space is
easier. We show GRNNs perform and generalize well in 3D object detection and 3D shape
estimation comparing to previous 2D CNN-based methods [136]. We further show GRNNs can
improve their object detection performance by co-learning this with view prediction objective
and can learn to detect objects without the need for any 3D annotation [35].
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1.2 Action + Physics: Learning to imagine how objects can
move and how to interact with them

Beyond passively observing scenes and detecting objects, an agent would need to actively
interact with the environment to collect more interesting and informative data. To intelligently
act, it is critical to know how objects can move, and how they can interact with each others.
In my research, I explore how the learned visual representations can aid the learning of object
dynamics and manipulation.

To learn how objects can move, we enforce the model to learn a forward physics simulator
in the 3D feature space inferred from input images [137]. Our simulator can simulate how the
detected objects move in response to an action, and can identify whether an object configuration
is physically plausible or not. Our model has several advantages over existing image-based object
dynamics models. First, since the 3D feature representation remains persistent across camera
views, the resulting dynamics model also remains persistent across views: one can use images
captured from any camera viewpoint as input and the resulting prediction is consistent. Current
image-based methods are sensitive to viewpoint changes and can easily break when testing on
unseen views. Second, we empirically show that our model can predict much more accurate
object dynamics compared to methods that use 2D visual features. Additionally, our model is
more interpretable: we can render a video that reflects the physics simulation in the 3D feature
representation using the learned view prediction module. Lastly, in the 3D representation space,
it is easy to check whether two objects intersect in 3D by checking whether their 3D occupancy
masks overlap. With this simple rule, our model can correctly infer the feasibility of an object
configuration.

With the learned dynamics model, we show that the agent can successfully bring objects to
target locations [137]. The model encodes visual features so it can handle objects with varying
shapes and colors. More importantly, since our model can infer 3D object interpenetration,
our model generalizes to tasks that involve obstacles to avoid. we have empirically shown our
model outperforms existing state-of-the-art methods, and can successfully transfer to a real robot
platform.

While learning object dynamics is an important component for the agent to plan, manipulate
and conduct spatial reasoning, learning general object dynamics is still challenging. Can our
agents still learn to manipulate diverse objects even without explicitly modeling the underlying
object dynamics? How can we use the 3D feature representations to aid the learning in this setup?

To manipulate objects with diverse appearances and poses, we propose models that learn to
compose a library of expert policies (behaviors) where each expert policy only works on a subset
of objects. Our models learn to use the 3D feature presentations as retrieval keys to select a
behavior that will work under the current scene. While another straightforward appraoch will
be to learn a direct mapping from the visual representations to actions, as suggested by previous
works in model-free visuo-motor policy learning [67], we found this approach is ineffective in
learning a successful policy due to the huge computational bottleneck introduced by the 3D
feature representations. Thus, instead of learning to regress from the 3D feature representations
to the target action, we use the 3D feature representations to retrieval scene that is close to the
current scene and apply the corresponding expert policy. We show the resulting models can
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handle diverse objects, arrangements, and input views, even without explicitly modeling the
underlying object dynamics. We further validate the effectiveness of the proposed model on a
real robot and show it can learn to push and pick-and-place objects of diverse appearance and
poses.

1.3 Concept learning: Learning to construct memory and as-
sociate current observations with past memory

Intelligence is not only about detecting and interacting with individual objects, but also about
forming memory and making association and analogy between similar instances and configu-
rations. In this thesis, we also explore how the 3D feature representation can improve the way
models learn about visual concepts and instance association.

We propose to learn visual concepts through associating objects with their 3D feature rep-
resentation inferred from images [93]. With the learned 3D feature representation, the model
can identify the same object or similar objects under varying scales, poses from images captured
from varying viewpoint: since our machine has object permanence, its perception is not affected
by the camera viewpoint change; since the visual representation is 3D-aware, the 3D feature
maps of two objects can be rotated and scaled appropriately before their features are compared
to handle object instances in a variety of 3D poses and scales. We show, without any human
labels, the model can learn to correctly associate similar objects and form visual concepts. When
given one example of a novel object, our model can recognize it when it presents in unseen poses
and locations. From a few labelled examples, the model can learn to name objects in unlabelled
scenes.

How effectively we can use existing knowledge depends much on how well we organize
them. To acquire new knowledge or concepts more efficiently, we need to improve the way we
organize existing knowledge. To achieve this, we propose to further factorize the learned whole-
object visual concepts into shapes, color, texture parts, and so on [95]. By splitting concepts into
smaller entities, the model can discover more shared concepts across object instances, and can
learn new concepts efficiently by exploiting the combinations between these factorized concepts.
We show our model can efficiently learn concepts about shapes and color from a few labelled
samples, and can use the learned concepts to conduct complex visual question answering.

1.4 Language understanding: Learning to interpret language
through visual simulation

Language is a critical media for humans to think and communicate. If the agents can correctly
interpret human languages, then they can learn more efficiently through human instructions and
documentations. How can the learned 3D visual representations, dynamic models, and concepts
affect the way the agent can learn and interpret language meaning?

Humans understand language regarding a scene through visual simulation. Consider the
following two sentences: “He used the newspaper to protect his face from the wind.” and “He
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used the matchbox to protect his face from the wind.” Although both sentences are grammatically
and syntactically identical, we interpret them differently. From the first sentence, most humans
can mentally imagine a visual simulation of the scene, and the simulation will allow us to answer
millions of questions such as: “Does the man use two hands or one?” “Is the newspaper folded?”
“Is the man holding the newspaper?”

Inspired by the way humans learn, we propose a ground language in the developed 3D fea-
ture space where we can simulate how objects can move, and can reason about the physical
plausibility of a configuration [94]. In 3D, the model can reason about the physical plausibility
of a configuration by checking 3D non-intersection and object affordance. We introduce a lan-
guage grounding model that learns a mapping between 3d feature tensors and natural language
utterance. We have empirically shown that the models can successfully infer plausibility and
implausibility of statements, localize object referents robust to camera viewpoint, guide object
placement policies from natural language instructions, and outperform the existing 2D models
by a large margin in all the above tasks.

1.5 Dissertation structure
This thesis consists of four main parts regarding four key modules we wish an embodied agent

can have: perception, action, concept learning, and language understanding. The contributions
of this thesis are as follows:

Part I is about perception – we show how we can establish an initial visual perception mod-
ule that can start parsing image data collected by these moving agents into a persistent scene
representation with objects in it.

In Chapter 2, we introduce the key neural architectures, GRNNs, for parsing videos captured
by moving agents. We empirically evaluate the models in 3D object detection and novel view
prediction. In both tasks, we show that GRNNs outperform previous state-of-the-art methods
that do not explicitly use geometric operations and can generalize to complicated scenes with
more objects while previous work fails. This chapter was previously published as Tung et al.
[136].

In Chapter 3, we further show how GRNNs can improve their object detection performance
by co-learning with a self-supervised view prediction objective. We further explore unsupervised
methods using GRNNs that can segment moving objects and learn to detect them without the
need for any 3D annotations. This chapter was previously published as Harley et al. [35].

Part II is about learning object dynamics and manipulation – beyond object detection, we further
extend the model to understand how objects move and how the agents can interact with these
objects.

In Chapter 4, we propose dynamic models that learn on top the persistent 3D scene repre-
sentation. We show the models outperform previous vision-based dynamics models by a large
margin, and can generalize to images viewpoints outside the training distribution. We further
deploy the learned dynamics model on a real robotics platform and we show the models learned
in the simulation can directly transfer to real. This chapter was previously published as Tung
et al. [137].
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In Chapter 5, we extend our learning framework to learn to manipulate diverse objects even
without explicitly modeling the underlying object dynamics. To handle objects with diverse
appearance and poses, we propose models that learn to compose a library of expert policies (be-
haviors) where each expert policy works only on a subset of objects/poses. To select a behavior
that would work under the current scene, our models learn to retrieve similar scene and corre-
sponding behavior using the learned 3D feature presentations. We show the resulting models can
handle diverse objects, arrangements, and input views. We further validate the effectiveness of
the proposed model on a real robot and show that it can learn to pick-and-place objects of diverse
appearance.

Part III is about learning visual concepts – we show how the agents can learn to construct visual
memory and associate observed objects with previously seen objects

In Chapter 6, we propose a few-shot concept learning module that learns to associate and
group detected objects into clusters by comparing them in the learned persistent 3D feature space.
We show our model can learn a new concept from a few labels by propagating the labels to
instances in the same cluster. This chapter was previously published as Prabhudesai et al. [93].

In Chapter 7, we extend the concept learning module to further factorize object representation
into attributes, and learn concepts on top of these attributes. We show our model can learn new
concepts and answer complex questions regarding visual inputs, from a few labelled images.
This chapter was previously published as Prabhudesai et al. [95].

Part IV is about language understanding – we show how the agents can understand language
and their affordability by grounding language in the learned 3D feature representation space that
supports spatial understanding and dynamics simulation.

In Chapter 8, we show how grounding language in the 3D feature space can improve the way
machines understand language. These models can successfully infer plausibility and implausibil-
ity of statements, localize object referents, guide object placement policies from natural language
instructions, and outperform existing 2D models by a large margin in all the above tasks. This
chapter was previously published as Prabhudesai et al. [94].

We conclude and discuss future directions in Chapter 9
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Part I

Perception: Learning to see a stable world
with objects
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Chapter 2

Building Embodied Perception with
Geometry-Aware Recurrent Networks

2.1 Introduction

Figure 2.1: Internet vision versus robotic vision. Pictures taken by humans (top row) (and
uploaded on the web) are the output of visual perception of a well-trained agent, the human
photographer. The content is skillfully framed and the objects appear in canonical scales and
poses. Pictures taken by mobile agents, such as a NAO robot during a robot soccer game (bottom
row), are the input to such visual perception. The objects are often partially occluded and appear
in a wide variety of locations, scales and poses. We present recurrent neural architectures for the
latter, that integrate visual information over time to piece together the visual story of the scene.

Current state-of-the-art visual systems [38] accurately detect object categories that are rare
and unfamiliar to many of us, such as gyromitra, a particular genus of mushroom (Figure 2.1
top left). Yet, they neglect the basic principles of object permanence or spatial awareness that
a one-year-old child has developed: once the camera turns away, or a person walks in front
of the gyromitra, its detection disappears and it is replaced by the objects detected in the new
visual frame. We believe the ability of current visual systems to detect rare and exquisite object
categories and their inability to carry out elementary spatial reasoning is due to the fact that

0This chapter is based on the paper published previously at CVPR 2019 [136].
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Figure 2.2: Geometry-aware Recurrent Neural Networks (GRNNs) integrate visual informa-
tion over time in a 3D geometrically-consistent deep feature memory of the visual scene. At each
frame, RGB images are unprojected into corresponding 3D feature tensors, which are oriented
to the coordinate frame of the memory map built thus far (2nd row). A 3D convolutional GRU
memory is then updated using the egomotion-stabilized features as input.

they are trained to label object categories from static Internet photos (in ImageNet and COCO
datasets) using a single frame as input. Our overexposure to Internet photos makes us forget
how pictures captured by mobile agents look. Consider Figure 2.1. Internet photos are skillfully
captured by human photographers, are well framed and show objects unoccluded, in canonical
locations, scales and poses (top row). Instead, photos captured by NAO robots during a soccer
game show objects in a wide variety of scales, poses, locations, and occlusion configurations
(bottom row). Often, it would not even make sense to label objects in such images, as most
objects appear only half-visible. In the case of Internet vision, the picture is the output of visual
perception of a well-trained visual agent, the human photographer. In the case of mobile robotic
vision, the picture is the input to such visual perception. Thus, different architectures may be
needed for each.

We present Geometry-aware Recurrent Neural Network architectures, which we call GRNNs,
that learn to “lift” and integrate over time 2D image features into 3D feature maps of the scene,
while stabilizing against the egomotion of the agent. They update over time a 3-dimensional
latent feature state: the latent feature vectors are arranged in a 3D grid, where every location of
the grid encodes a 3D physical location in the scene. The latent state is updated with each new
input frame using egomotion-stabilized convolutions, as shown in Figure 6.1. GRNNs learn to
map 2D input visual features to a 3D latent feature map, and back, in a differentiable manner. To
achieve such differentiable and geometrically-consistent mapping between the world scene and
the 3D latent feature state, they are equipped with differentiable geometric operations, such as
egomotion estimation and feature stabilization, 3D-to-2D projection, and 2D-to-3D unprojection,
as shown in Figure 6.1. Beyond being space-aware, we do not impose any other constraints on
the learned representations: they are free to encode whatever is relevant for the downstream task.
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Figure 2.3: GRNN architecture. At each time step t, an RGB image It is the input to a 2D
U-net. The resulting 2D deep feature maps are unprojected to 4D tensors Vt, which in turn are
input to a 3D U-net (we do not show the optional combination with unprojected depthmaps for
clarity). The resulting 3D deep feature maps V̄ are oriented to cancel the relative camera motion
between the current viewpoint and the coordinate system of the 3D GRU memory state Mt−1,
as estimated by an egomotion estimation module. The resulting oriented 3D deep feature maps
V̄t’ update the 3D GRU memory state and output Mt. The updated state of the GRU module is
then projected from specific viewpoints and decoded into a corresponding RGB image for view
prediction, or fed into a 3D MaskRCNN to predict 3D object bounding boxes and object voxel
occupancies.

2.2 Geometry-aware recurrent networks
GRNNs are recurrent neural networks whose latent state Mt ∈ Rw×h×d×c, t = 1 · · ·T learns a
3D deep feature map of the visual scene. We use the terms 3D feature map, which is indeed a 4D
tensor, to denote a set of feature channels, each of which is placed in a three-dimensional grid.
The memory map is updated with each new camera view in a geometrically-consistent manner,
so that information from 2D pixel projections that correspond to the same 3D physical point end
up nearby in the memory tensor, as illustrated in Figure 5.2. This permits later convolutional
operations to have a correspondent input across frames, as opposed to it varying with the motion
of the observer. We believe this is a key for generalization. The main components of GRNNs are
illustrated in Figure 5.2 and are detailed right below.

Unprojection At each timestep, we feed the input RGB image It to a 2D convolutional encoder-
decoder network with skip-connections (2D U-net [105]) to obtain a set of 2D feature maps
Ft ∈ Rw×h×c. We then unproject all feature maps to create a 4D feature tensor VI

t ∈ Rw×h×d×c

as follows: For each ”cell” in the 3D feature grid indexed by (i, j, k), we compute the 2D pixel
location (x, y) which the center of the cell projects onto, from the current camera viewpoint:

[x, y] = [f · i/k, f · j/k],
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where f is the focal length of the camera. Then, VI
i,j,k,: is filled with the bilinearly interpolated

2D feature vector at that pixel location (x, y). All voxels lying along the same ray casted from
the camera center will be filled with nearly the same image feature vectors. We further unproject
the input 2D depthmap Dt into a binary voxel occupancy grid VD

t ∈ {0, 1}w×h×d that contains
the thin shell of voxels directly visible from the current camera view. We compute this by filling
all voxels whose unprojected depth value equals the grid depth value. When a depth sensor is
not available, we learn to estimate the depthmap using a 2D U-net that takes the RGB image as
input.

We multiply each 3-dimensional channel of the feature tensor VI
t with the binary occupancy

grid VD
t to get a final 4D feature tensor Vt ∈ Rw×h×d×c. The unprojected tensor Vt enters a 3D

encoder-decoder network with skip connections (3D U-net) to produce a resulting feature tensor
V̄t ∈ Rw×h×d×c.

Egomotion estimation and stabilization Our model orients the 3D feature memory to have
0◦ elevation using the absolute elevation angle of the first camera view. We assume this value
is given, but it can also be estimated using a 2D convnet. This essentially makes the memory
to always be parallel to the ground plane. The azimuth of the 3D feature memory is chosen to
be the azimuth of the first view in the input frame sequence. We assume the camera does not
translate, only rotates by varying two degrees of freedom, elevation and azimuth.

At each time step t, we estimate the relative elevation and azimuth between the current
frame’s viewpoint and the feature memory. Note that we can alternatively predict the (absolute)
elevation directly from each input view, without matching against the memory built thus far. For
the azimuth, since we need to estimate the relative azimuth to the first view, such cross-view
comparison is necessary. Specifically, the tensor V̄t is rotated by different azimuth and elevation
angles and results in a stack of rotated feature tensors V̄rot ∈ R(L·K)×w×h×d×c, where L,K are
the total number of azimuths and elevation angles considered, respectively, after discretization.
Similar to the bilinear interpolation used during unprojection, to fill in each feature voxel in a
rotated tensor V̄rot

·,i,j,k,:, we compute the 3D location (X, Y, Z) where it is rotated from and insert
the bilinearly interpolated feature value from the original tensor V̄t. We then compare each of
the rotated feature maps with our current 3D feature memory Mt−1 ∈ Rw×h×d×c using matrix
inner products, to produce a probability distribution over azimuth and elevation pairs:

ρ̄t(r) = Mt−1 ∗ V̄rot(r, :, :, :, :), r ∈ 1 · · ·L ·K
ρt = softmax(ρ̄t),

where ∗ denotes matrix inner product. The resulting rotation r̄t is obtained by a weighted average
of azimuth and elevation angles where weights are in ρt. Finally, we orient the tensor V̄t to cancel
the relative rotation r̄t with respect to our 3D memory Mt−1, we denote the oriented tensor as V̄′t.

Recurrent map update Once the feature tensor has been properly oriented, we feed V̄′t as
input to a 3D convolutional Gated Recurrent Unit [12] layer, whose hidden state is the memory
Mt−1 ∈ Rw×h×d×c, as shown in Figure 5.2. This state update outputs Mt. The hidden state is
initialized to zero at the beginning of the frame sequence. For our view prediction experiments
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where we use a fixed number of views T , we found that averaging, namely MT = 1
T

∑
t

¯̄V ′t works
equally well to using the GRU update equations, while being much faster.

Projection and decoding Given a 3D feature memory Mt and a desired viewpoint q, we first
rotate the 3D feature memory so that its depth axis is aligned with the query camera axis. We then
generate for each depth value k a corresponding projected feature map pk ∈ Rw×h×c. Specifi-
cally, for each depth value, the projected feature vector at a pixel location (x, y) is computed by
first obtaining the 3D location it is projected from and then inserting bilinearly interpolated value
from the corresponding slice of the 4D tensor M. In this way, we obtain d different projected
maps, each of dimension w× h× c. Depth ranges from D− 1 to D+ 1, where D is the distance
to the center of the feature map, and are equally spaced.

Note that we do not attempt to determine visibility of features at this projection stage. The
stack of projected maps is processed by 2D convolutional operations and is decoded using a
residual convLSTM decoder, similar to the one proposed in [23], to an RGB image. We do not
supervise visibility directly. The network implicitly learns to determine visibility and to choose
appropriate depth slices from the stack of projected feature maps.

2.2.1 View prediction

Mobile agents have access to their egomotion, and can observe sensory outcomes of their mo-
tions and interactions. Training sensory representations to predict such outcomesis a useful form
of supervision, free of human annotations, often termed self-supervision since the “labels” are
provided by the embodied agent herself. Can spatial common sense, the notion of objects and
scenes, geometry, visibility and occlusion relationships, emerge in a self-supervised way in a
mobile agent that moves around and observes the world?

We train GRNNs to predict the image the agent would see from a novel viewpoint, given a
short view sequence as input. Given the 3D feature memory and a query viewpoint, we orient
the map to the query viewpoint, we project it to 2D and decode it to an RGB image, as described
above. We train our view prediction using a standard cross-entropy pixel matching loss, where
the pixel intensity has been squashed into the range [0, 1]. To test the how GRNNs perform in
this task, we consider the following simulation datasets:
i) ShapeNet arrangement from [11] that contains scenes with synthetic 3D object models from
ShapeNet [9] arranged on a table surface. The objects in this dataset belong to four object
categories, namely, cups, bowls, helmets and cameras. We follow the same train/test split of
ShapeNet [9] so that object instances which appear in the training scenes do not appear in
the test scenes. Each scene contains two objects, and each image is rendered from a viewing
sphere which has 3×18 possible views with 3 camera elevations (20◦, 40◦, 60◦) and 18 azimuths
(0◦, 20◦, . . . , 340◦). There are 300 different scenes in the training set and 32 scenes with novel
objects in the test set.
ii) Shepard-metzler shapes dataset from [23] that contains scenes with seven colored cubes stuck
together in random arrangements. We use the train and test split of [23].
iii) Rooms-ring-camera dataset from [23] that contains rooms with random floor and wall colors,
in which there are variable numbers of objects with different shapes and colors.
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We compare GRNNs against the recent ”tower” architecture of Eslami et al. [23], a 2D
network trained under a similar view prediction loss. At each time step, the tower architecture
takes as input a 2D RGB image and performs a series of convolutions on it. The camera pose from
which the image was taken is tiled along the width and height axes and then concatenated with the
feature map after the third convolution. Finally, the feature maps from all views are combined via
average pooling. Both our model and the baseline use the same autoregressive decoder network.
For fairness of comparison, we use groundtruth egomotion rather than estimated egomotion in
all view prediction experiments, and only RGB input (no depth input of depth estimation) for
both our model and the tower baseline. In both the baseline and our model, we did not use any
stochastic units for simplicity and speed of training. Adding stochastic units in both is part of
our future work.

Test results from our model and baseline on test images of ShapeNet arrangements and
Shepard-metzler datasets are shown in Figure 2.4. Reconstruction test error for the ShapeNet
arrangement test set is shown in Table 2.1. GRNNs have a much lower reconstruction test error
than the tower baseline. In Figure 2.4, in the first four rows, the distribution of the test scenes
matches the training scene distribution. Our model outperforms the baseline in visual fidelity.
In Figure 2.4, in the last four rows, the test scene distribution does not match the training one:
we test our model and baseline on scenes with four objects, while both models are trained
on scenes with exactly two objects. In this case, our model shows strong generalization and
outperforms by a margin the geometry-unaware baseline of [23], the latter refuses to see more
than two objects present. We argue the ability to spatially reason should not be affected by
the number of objects present in the scene. Our results suggest that geometry-unaware models
may be merely memorizing views with small interpolation capabilities, as opposed to learning to
spatially reason.

Scene arithmetics The learnt representations of GRNNs are capable of scene arithmetics, as
we show in Figure 2.5. The ability to add and subtract individual objects from 3D scenes just by
adding and subtracting their corresponding latent representations demonstrates that our model
disentangles what from where. In other words, our model learns to store object-specific informa-
tion in the regions of the memory which correspond to the spatial location of the corresponding
object in the scene.

Tower GRNNs
(Baseline) (Ours)

ShapeNet 0.109± 0.029 0.084± 0.017
Shepard-Metzler 0.081± 0.017 0.073± 0.014

Table 2.1: View prediction loss and the standard deviation for the ShapeNet arrangement test
set for two-object test scenes. Our model and baseline were trained on scenes that also contain
two objects with different object instances.
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Figure 2.4: View prediction results for the proposed GRNNs and the tower model of Eslami et
al. [23]. Columns from left to right show the three input views, the groundtruth image from the
query viewpoint, the view predictions for GRNNs and for the tower baseline. The first two rows
are from the ShapeNet arrangement test set of [11], the next two rows are from the Shepard-
Metzler test set of [23], and the following two rows are from the Rooms-ring-camera dataset
also from [23]. The last four rows show generalization to scenes with four objects from the
ShapeNet arrangement dataset, while both models were trained only on scenes with two ob-
jects. GRNNs outperform the baseline by a large margin and strongly generalize under a varying
number of objects.

2.2.2 3D object detection and segmentation

We train GRNNs in a supervised manner to predict 3D object bounding boxes and 3D object
segmentation masks, using groundtruth 3D object boxes and 3D voxel segmentations from a
simulator. We adapt MaskRCNN [38], a state-of-the-art object detector/segmentor, to have 3D
input and output, instead of 2D. Specifically, we consider every grid location (X, Y, Z) in our
3D memory to be a candidate 3D box centroid. At each time step, the 3D feature memory
Mt is fed to a 3D region proposal network to predict positive anchor centroids, as well as the
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Figure 2.5: Scene arithmetic with GRNNs and the model of Eslami et al. [23] (tower). Each
row is a separate ”equation”. We start with the representation of the scene in the leftmost column,
then subtract (the representation of) the scene in the second column, and add the (representation
of the) scene in the third column. We decode the resulting representation into an image. The
groundtruth image is shown in the forth column. It is much more visually similar to the prediction
of GRNNs than to the tower baseline.

corresponding adjustment for the box center location and the box dimensions, width, height and
depth. Our 3D bounding box encoding is similar to the one proposed in VoxelNet [148]. We filter
the proposed boxes using non-max suppression to reject highly overlapping ones. We train with
a combination of classification and regression loss, following well established detector training
schemes [38, 101]. The proposed 3D bounding boxes that have Intersection of Union (IoU)
above a specific threshold with a corresponding groundtruth object box are denoted as Regions
of Interest (ROIs) and are used to pool features from their interior to predict 3D object voxel
occupancy, as well as a second refinement of the predicted 3D box location and dimensions.

Object permanence Even when an object is not visible in the current camera viewpoint, its
features are present in the 3D feature memory, and our detector detects and segments it, as we
show in the second column of Figure 2.6. In other words, object detections persist through
occlusions and changes of the field of view caused by camera motion. Applying the detector on
the latent 3D model of the scene as opposed to the 2D visual frame is beneficial. The latent 3D
model follows the physical laws of 3D non-intersection and object permanence, while 2D visual
observations do not.

We use the ShapeNet arrangement dataset, and the train/test scene split of [11]. We use
mean Average Precision (mAP) to score the performance of our model and baselines for 3D
object detection and 3D segmentation. Mean average precision measures the area under the
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Figure 2.6: 3D object detection and segmentation with GRNNs. In the first and second row
on the left we show the input images over time, and their corresponding object detection results
for a top view, respectively. Blue voxels denote groundtruth objects and the predicted bounding
boxes are shown in red and green . On the right, we show segmentation results for the third
time step, visualizing the results from two views. Predicted 3D boxes and their corresponding
predicted masks are show in red and green, and we show in blue the corresponding groundtruth.
Best seen in color.

precision-recall curve. We vary the cutoff threshold of Intersection over Union (IoU) to be 0.33,
0.5 and 0.75 between our predictions and the groundtruth 3D boxes and masks. We consider
four ablations for our model: predicted egomotion (pego) versus groundtruth egomotion (gtego)
used, and predicted depth (pd) versus groundtruth depth (gtd) used as input. We use suffixes to
indicate the model we use.

detection 2DRNN-gtego-gtd GRNN-gtego-pd GRNN-gtego-gtd GRNN-pego-gtd
mAPd

0.75 0.364 0.471 0.816 0.549
mAPd

0.50 0.964 0.964 0.998 0.983
mAPd

0.33 0.998 0.994 0.999 0.999

segmentation 2DRNN-gtego-gtd GRNN-gtego-pd GRNN-gtego-gtd GRNN-pego-gtd
mAPm

0.75 0.003 0.024 0.058 0.023
mAPm

0.50 0.104 0.246 0.338 0.249
mAPm

0.33 0.244 0.429 0.485 0.384

Table 2.2: Mean Average Precision (mAP) for 3D object detection and 3D segmentation for three
different thresholds of Intersection over Union (IoU) (0.75,0.5,0.33) on ShapeNet arrangement
test set of [11].

We compare against the following 2D baseline model, which we call 2D-RNN: we remove the
unprojection, egomotion estimation and stabilization and projection operations from our model.
The baseline takes as input an image and the corresponding depth map, feeds it to a 2D encoder-
decoder network with skip connections to obtain a 2D feature tensor. The camera parameters
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for this view are concatenated as additional channels to the 2D feature tensor and altogether
they are fed to another 2D encoder-decoder network to obtain the 2D feature tensor for a 2D
GRU memory update. We then feed the 2D memory feature tensor to an additional 2D encoder-
decoder network and reshape the channel dimension of its output into d feature vector of length
7 (one value for the anchor box prediction, six values for the 3D bounding boxes adjustments) to
form a 4D tensor of size w × h× d× 7 as prediction.

We show mean average precision for 3D object detection and 3D segmentation for our model
and the baseline in Table 2.2, and visualize predicted 3D bounding boxes and segmentations
from GRNNs (GRNN-gtego-gtd) in Figure 2.6. GRNNs significantly outperform the 2D-RNN.
Groundtruth depth input significantly helps 3D segmentation. This suggests that inferring depth
using a cost volume as in [56] would potentially help depth inference as opposed to relying on a
per frame depthnet [21] that does not have access to multiple views to improve its predictions.
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Chapter 3

Learning to See Moving Objects without
3D Labels

3.1 Introduction
In the previous chapter, we have introduced Geometry-Aware Recurrent Networks (GRNNs),
neural architectures that construct end-to-end trainable view-invariant 3D feature represen-
tations for the scenes captured by the embodied agents. We have shown that GRNNs outperform
and generalize better than geometry-unaware baselines in 3D object detection and view predic-
tion. Here in this chapter, we want to move a step forward to answer another interesting question:
since our machines are embodied agents that can act in the world to collect more data, can they
learn or improve through their own collected data? To answer this question, we need to think
about what kind of data can mobile agents collect. Assuming these agents are in their initial stage
where they have not yet developed their visual perception and cannot even localize objects from
the scene, all they can do is move in random directions. Hopeless as it sounds, when the agents
move, they can observe a sequence of images capturing from different views. Besides, they will
have access to the pose and the displacement of their torques. Using the data, we propose to use
prediction as a self-supervisory signal in allowing agents to learn better visual representations
that will aid their generalization ability.

The first task we propose, which has been introduced in the previous chapter, is view pre-
diction: the agents learn to predict how a scene looks from various camera viewpoints given an
input view. Besides RGB images, learning the tasks require the camera positions where the im-
ages are taken from, because the models need to know which view to generate. Such information
is accessible to the agents since they can calculate the camera poses through forward kinematics
using the pose and the displacement of their torques. To be able to predict images from multiple
views, the models must learn to complete the features invisible from the input view so they can
generate the pixels correctly beyond what can be observed. In this sense, the features can become
consistent across views, making them truly view-invariant.

View prediction has been the center of much recent research effort. Most methods test their
models in single object scenes, and aim to generate beautiful images for graphics applications
[56, 107, 115, 128], as opposed to learning general-purpose visual representations. The work

0This chapter is based on the paper published previously at ICLR 2020 [35].
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of [23] attempted view prediction in full scenes, yet only experimented with toy data contain-
ing a few colored 3D shapes. Their model cannot effectively generalize beyond the training
distribution, e.g., cannot generalize across scenes of a variable number of objects.

In the previous chapter, we have shown our models outperform the work of [23] and gener-
alize well in both 3D object detection and view prediction tasks. In this chapter, we show that,
with this self-supervised objective, we can further improve our 3D object detection performance.
However, we found out training view prediction by regressing the outputs to the target image
in the pixel space does not scale to complex scenes like real-world street views. To address the
problem, we introduce a novel view-contrastive loss that learns more semantically meaningful
features. With the learned features, we can discover objects in 3D from a single camera view-
point, without any human annotations of object boxes or masks.

3.2 Semi-supervised learning of 3D object detection
Can pre-training the models with the view prediction objective help to improve the object detec-
tion performance? To answer the question, we pre-train the GRNNs weights with view predic-
tion, and then train a 3D object detector module supervised to map a 3D feature volume M to 3D
object boxes. We compare the model with a model trained from random weight initialization,
i.e., without pre-training. After pre-training, we freeze the feature layers after view predictive
learning, and only supervise the detector module; for the fully supervised baseline (from random
initialization), we train end-to-end.

We train our models in CARLA [18], an open-source photorealistic simulator of urban driv-
ing scenes, which permits moving the camera to any desired viewpoint in the scene. We obtain
data from the simulator as follows. We generate 1170 autopilot episodes of 50 frames each (at 30
FPS), spanning all weather conditions and all locations in both “towns” in the simulator. We de-
fine 36 viewpoints placed regularly along a 20m-radius hemisphere in front of the ego-car. This
hemisphere is anchored to the ego-car (i.e., it moves with the car). In each episode, we sample 6
random viewpoints from the 36 and randomly perturb their pose, and then capture each timestep
of the episode from these 6 viewpoints. We generate train/test examples from this, by assembling
all combinations of viewpoints (e.g., N ≤ 5 viewpoints as input, and 1 unseen viewpoint as the
target). We filter out frames that have zero objects within the metric “in bounds” region of the
GRNN (32m × 32m × 4m). This yields 172524 frames (each with multiple views): 124256 in
Town1, and 48268 in Town2. We treat the Town1 data as the “training” set, and the Town2 data
as the “test” set, so there is no overlap between the train and test images.

We are interested in seeing the benefit of this pre-training across different amounts of label
supervision, so we first use the full CARLA train set for view prediction training (without using
box labels), and then use a randomly-sampled subset of the CARLA train set for box supervision;
we evaluate on the CARLA validation set. We varied the size of the box supervision subset across
the following range: 100, 200, 500, 1000, 10000, 80000. We show mean average precision (at
an IoU of 0.75) for car detection as a function of the number of annotated 3D bounding box
examples in Figure 3.1. As expected, the supervised model performs better with more labelled
data. In the low-data regime, pre-training greatly improves results.

However, we observe that the predicted images from this dataset are blurry and miss many
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Figure 3.1: Semi-supervised 3D object detection. Pre-training with view-contrastive predic-
tion improves results, especially when there are few object 3D bounding box annotations.

vital details, which raises the concern that learning view prediction through RGB regression
might be insufficient to obtain semantically meaningful features for complex scenes. To address
the problem, we sort to another option which makes predictions in a latent feature space. Re-
cently, [88] used a probabilistic contrastive objective that preserves mutual information between
the future bottom-up extracted features and the predicted contextual latent features. By training
with the contrastive objective, [88] shows the model can achieve strong performance in diverse
domains, including speech, text and image, text, and reinforcement learning in 3D environments.
The view-contrastive loss proposed in this work is a non-probabilistic version of their contrastive
objective. However, our work focuses on the video domain as opposed to image patches, and
uses drastically different architectures for both the contextual and bottom-up representations,
using a 3D representation bottleneck. In Figure 3.1, we show by pretraining the model with
view-contrastive losses, we can further improve the 3D object detection results when the number
of training data is limited. Next, we introduce in detail the view-contrastive loss.

3.2.1 View-contrastive rendering

Given a set of input RGBs, pointclouds, and camera poses (I(1),D(1),V (1)), . . . , (I(n),D(n),V (n)),
we train our model to predict feature abstractions of an unseen input (I(n+1),D(n+1),V (n+1)).We
consider two types of representations for the target view: a top-down one, T = f [(I(1),D(1),V (1)),

. . . , (I(n),D(n),V (n)),V (n+1)], and a bottom-up one, B = g[I(n+1),D(n+1)]. Note that the top-
down representation has access to the viewpoint V (n+1) but not to observations from that view-
point (I(n+1),D(n+1)), while the bottom-up representation is only a function of those observa-
tions.

We construct 2D and 3D versions of these representation types, using our architecture mod-
ules:• We obtain T 3D = ⊗M (n) by encoding the set of inputs 1, . . . , n.
• We obtain B3D = ⊗F (n+1) by encoding the single input n+ 1.
• We obtain T 2D = M(n)

viewn+1
by rendering ⊗M (n) from viewpoint V (n+1).

• We obtain B2D = F (n+1) by convolving I(n+1) with a 3-block 2D ResNet [37].
Finally, the contrastive losses pull corresponding (top-down and bottom-up) features close to-
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gether in embedding space, and push non-corresponding ones beyond a margin of distance:

L2D
contrast =

∑
i,j,m,n

max
(
Y2D
ij,mn(‖T 2D

ij − B2D
mn‖2 − α), 0

)
, (3.1)

L3D
contrast =

∑
i,j,k,m,n,o

max
(
Y3D
ijk,mno(‖T 3D

ijk − B3D
mno‖2 − α), 0

)
, (3.2)

where α is the margin size, and Y is 1 at indices where T corresponds to B, and −1 everywhere
else. The losses ask tensors depicting the same scene, but acquired from different viewpoints,
to contain the same features. The performance of a metric learning loss depends heavily on the
sampling strategy used [111, 119, 120]. We use the distance-weighted sampling strategy pro-
posed by [140] which uniformly samples “easy” and “hard” negatives; we find this outperforms
both random sampling and semi-hard [111] sampling.

3.2.2 Experiments
Sim-to-Real (CARLA-to-KITTI) transfer

We evaluate whether the 3D predictive feature representations learned in the CARLA simulator
are useful for learning 3D object detectors in the real world by testing on the real KITTI dataset
[29]. Specifically, we use view prediction pre-training in the CARLA train set, and box supervi-
sion from the KITTI train set, and evaluate 3D object detection in the KITTI validation set. We
use the (single-view) object detection benchmark from the KITTI dataset [29], with the official
train/val split: 3712 training frames, and 3769 validation frames. Existing real-world datasets
do not provide enough camera viewpoints to support view-predictive learning. Specifically, in
KITTI, all the image sequences come from a moving car and thus all viewpoints lie on a near-
straight trajectory. Thus, simulation-to-real transferability of features is especially important for
view predictive learning.

Method mAP@IOU
0.33 0.50 0.75

Random weight initialization .59 .52 .17
Pretrain view regress., frozen .64 .54 .15
Pretrain view regress., finetuned .65 .55 .18
Pretrain view contrast, frozen .67 .58 .15
Pretrain view contrast, finetuned .70 .60 .19

Table 3.1: CARLA-to-KITTI transferability of view-predictive
3D feature representations. We train a 3D detector module on
top of the inferred 3D feature maps M using KITTI 3D object box
annotations

We show simulation-
to-real transfer results in
Table 3.1. We com-
pare the proposed view
contrastive prediction pre-
training, with view regres-
sion pre-training, and ran-
dom weight initialization
(no pretraining). In all
cases, we train a 3D ob-
ject detection module su-
pervised using KITTI 3D
box annotations. We also
compare freezing versus
finetuning the weights of the pretrained inverse graphics network. The results are consistent with
the CARLA tests: view-contrastive pretraining is best, view regression pretraining is second, and
learning from human annotations alone is worst. Note that depth in KITTI is acquired by a real

24



velodyne LiDAR sensor, and therefore has lower density and more artifacts than CARLA, yet
our model generalizes across this distribution shift.

3.3 Unsupervised 3D moving object detection
Aside from improving the object detection results, here we propose an algorithm that can dis-
cover moving objects in an unsupervised manner using the learned features through view pre-
diction. Upon training, our model learns to map even a single RGB-D input to a complete 3D
imagination. Given two temporally consecutive and registered 3D maps ⊗F (t),⊗F (t+1)

reg , pre-
dicted independently using inputs (I(t),D(t)) and (I(t+1),D(t+1)), we train a motion estimation
module to predict the 3D motion field ⊗W (t) between them, which we call 3D imagination flow.
Since we have accounted for camera motion, this 3D motion field should only be non-zero for
independently moving objects. We obtain 3D object proposals by clustering the 3D flow vec-
tors, extending classic motion clustering methods [8, 86] to an egomotion-stabilized 3D feature
space, as opposed to 2D pixel space.

Estimating 3D imagination flow
Our 3D FlowNet is a 3D adaptation of the PWC-Net (2D) optical flow model [124]. Note
that our model only needs to estimate motion of the independently-moving part of the scene,
since egomotion has been accounted for. It works by iterating across scales in a coarse-to-
fine manner. At each scale, we compute a 3D cost volume, convert these costs to 3D dis-
placement vectors, and incrementally warp the two tensors to align them. We train our 3D
FlowNet using two tasks: (1) Synthetic transformation of feature maps: We apply random ro-
tations and translations to ⊗F (t) and ask the model to recover the dense 3D flow field that
corresponds to the transformation; (2) Unsupervised 3D temporal feature matching: Lwarp =∑

i,j,k ||⊗F
(t)
i,j,k −W(⊗F (t+1)

reg ,⊗W (t))i,j,k||, whereW(⊗F (t+1),⊗W (t)) back-warps ⊗F (t+1)
reg to

align it with ⊗F (t), using the estimated flow ⊗W (t). We apply the warp with a differentiable
3D spatial transformer layer, which does trilinear interpolation to resample each voxel. This
extends self-supervised 2D optical flow [145] to 3D feature constancy (instead of 2D brightness
constancy). We found that both types of supervision are essential for obtaining accurate 3D flow
field estimates. Since we are not interested in the 3D motion of empty air voxels, we additionally
estimate 3D voxel occupancy, and supervise this using the input pointclouds; we set the 3D mo-
tion of all unoccupied voxels to zero. We describe our 3D occupancy estimation in more detail
in the appendix.

The proposed 3D imagination flow enjoys significant benefits over 2D optical flow or 3D
scene flow. It does not suffer from occlusions and dis-occlusions of image content or projection
artifacts [123], which typically transform rigid 3D transformations into non-rigid 2D flow fields.
In comparison to 3D scene flow [43], which concerns visible 3D points, 3D imagination flow
is computed between visual features that may never have appeared in the field of view, but
are rather inpainted by imagination.

3D moving object segmentation
We obtain 3D object segmentation proposals by thresholding the 3D imagination flow magni-
tude, and clustering voxels using connected components. We score each component using a 3D
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Input RGBs
Input  

pointclouds
Estimated ego-
stabilized flow

Ground-truth  
object flow Moving object proposals

Color map

Figure 3.2: 3D feature flow and object proposals, in dynamic scenes. Given the input frames
on the left, our model estimates dense egomotion-stabilized 3D flow fields, and converts these
into object proposals. We visualize colorized pointclouds and flow fields in a top-down (bird’s
eye) view.

version of a center-surround motion saliency score employed by numerous works for 2D motion
saliency detection [28, 73]. This score is high when the 3D box interior has lots of motion but
the surrounding shell does not. This results in a set of scored 3D segmentation proposals for each
video scene.

3.3.1 Experiments

In this section, we test our model’s ability to detect moving objects in 3D without any 3D
object annotations, simply by clustering 3D motion vectors. We use two-frame video sequences
of dynamic scenes from the CARLA data, and we split the validation set into two parts for
evaluation: scenes where the camera is stationary, and scenes where the camera is moving. This
splitting is based on the observation that moving object detection is made substantially more
challenging under a moving camera.

We show precision-recall curves for 3D moving object detection under a stationary camera
in Figure 3.3. We compare our model against a model trained with RGB view regression and a
2.5D baseline. The 2.5D baseline computes 2D optical flow using PWC-Net [124], then proposes
object masks by thresholding and clustering 2D flow magnitudes; these 2D proposals are mapped
to 3D boxes by segmenting the input pointcloud according to the proposed masks. Our model
outperforms the baselines. Note that even with ground-truth 2D flow, ground-truth depth, and an
oracle threshold, a 2.5D baseline can at best only capture the portions of the objects that are in
the pointcloud. As a result, 3D proposals from PWC-Net often underestimate the extent of the
objects by half or more. Our model imagines the full 3D scene in each frame, so it does not have
this issue.

We show precision-recall curves for 3D moving object detection under a moving camera in
Figure 3.4. We compare our model where egomotion is predicted by our neural egomotion mod-
ule, against our model with ground-truth egomotion, as well as a 2.5D baseline, and a stabilized
2.5D baseline. The 2.5D baseline uses optical flow estimated from PWC-Net as before. To
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Figure 3.3: Unsupervised 3D moving object
detection with a stationary camera.
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Figure 3.4: Unsupervised 3D moving object
detection with a moving camera

stabilize the 2.5D flow, we subtract the ground-truth scene flow from the optical flow estimate
before generating proposals. Our model’s performance is similar to its level in static scenes, sug-
gesting that the egomotion module and stabilization mechanism effectively disentangles camera
motion from the 3D feature maps. The 2.5D baseline performs poorly in this setting, as expected.
Surprisingly, performance drops further after stabilizing the 2D flows for egomotion. We con-
firmed this is due to the estimated scene flow being imperfect: subtracting ground-truth scene
flow leaves many motion fragments in the background. With ground-truth 2D flow, the baseline
performs similar to its static-scene level.

We have attempted to compare against the unsupervised object segmentation methods pro-
posed in [44, 61] by adapting the publicly available code accordingly. These models use an
inference network that takes as input the full video frame sequences to predict the locations of
2D object bounding boxes, as well as frame-to-frame displacements, in order to minimize view
prediction error in 2D. We were not able to produce meaningful results from their inference
networks. The success of [44] may partially depend on carefully selected priors for 2D object
bounding box location and object size parameters that match the moving MNIST dataset statis-
tics used in the paper, as suggested by the publicly available code. We do not assume knowledge
or existence of such object location or size priors for our CARLA data.
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Part II

Action + Physics: Learning to imagine how
objects can move and how to interact with

them

29





Chapter 4

Learning View-invariant Intuitive Physics
Models for Manipulation

4.1 Introduction
In Part I, we have introduced neural architectures that would allow embodied agents to perceive
a stabilized scene while moving. We also introduce how the agents can learn to detect objects
in the scene representations. In this chapter, we want to discuss how the agents can develop a
deeper understanding of the scene beyond simple object detection. For the agents to intelligently
interact with scene or reason about what can happen in the scene, it is critical that they learn how
the environment reacts to their actions and interactions [36, 80].

Humans can effortlessly imagine how a scene will change as a result of their interactions
with the objects in the scene [15, 27]. What is the representation space of these imaginations?
They are not pixel accurate and, interestingly, they are not affected by occlusions. Consider a
teaspoon dipping inside a coffee mug. Though it will be occluded from nearly all viewpoints but
the bird’s eye view, we have no difficulty keeping it in our mind as present and complete. We
can imagine watching it from different viewpoints, increase or decrease its size, predict whether
it will fit inside the mug, or even imagine filling the mug with more spoons.

Inspired by humans capability to simulate scene changes in a viewpoint-invariant and occlusion-
resistant manner, we present 3D object-factorized environment simulators (3D-OES), an action-
conditioned dynamics model that predicts scene changes caused by object and agent interactions
in a viewpoint-invariant 3D neural scene representation space, inferred from RGB-D videos.
Using Geometry-Aware Recurrent Networks (GRNNs) introduced in Chapter 2, 3D-OES differ-
entiably maps an RGB-D image to a 3D neural scene representation, detects objects in it, and
forecasts their future 3D motions, conditioned on actions of the agent. A graph neural network
operates on the extracted 3D object feature maps and the action input and predicts object 3D
translations and rotations. Our model then generates future 3D scenes by simply translating and
rotating object 3D feature maps, inferred from the first time step, according to cumulative 3D
motion predictions. In this way, we avoid distribution shift in object features caused by forward
model unrolling, hence minimizing error accumulation.

0This chapter is based on the paper published previously at CoRL 2021 [137].
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Our main insight is that scene dynamics are simpler to learn and represent in 3D than in 2D,
for the following reasons: i) In 3D, object appearance and object location are disentangled.
This means object appearance (what) does not vary with object locations (where). This what-
where disentanglement permits generating scene variations by simply translating and rotating 3D
object appearance representations. Scene generation by moving around objects is not possible
in a projective 2D image space, since objects change appearance due to camera viewpoint vari-
ation, occlusions or out-of-plane object rotations [19]. It is precisely the permanence of object
appearance in 3D that permits easy simulation. ii) In 3D, inferring free space and object colli-
sions is easy. Given a 3D scene description in terms of object locations and 3D shapes, we can
easily predict whether an object will collide with another or will be contained in another. Simi-
lar inferences would require many examples to learn directly from 2D images, and would likely
have poor generalization. Yet, extracting 3D scene representations from RGB or RGB-D video
streams is a challenging open problem in computer vision research [49, 65, 103, 104, 135]. We
build upon the recently proposed geometry-aware recurrent neural networks (GRNNs) [33, 135]
to infer 3D scene feature maps from RGB-D images in a differentiable manner, optimized end-
to-end for our object dynamics prediction task.

We evaluate 3D-OES in single-step and multi-step object motion prediction for object push-
ing and falling, and apply it for planning to push objects to desired locations. We test its gener-
alization while varying the number and appearance of objects in the scene, and the camera view-
point. We compare against existing learning-based 2D image-centric or object-centric models
of dynamics [32, 144] as well as graph-based dynamics learned over engineered 3D representa-
tions of object locations [108]. Our model outperforms them by a large margin. In addition, we
empirically show that training the 2D baselines under varying viewpoints causes them to dramat-
ically underfit on the training data, and be highly inaccurate in the validation set. This suggests
that different architectures are necessary to handle viewpoint variations in dynamics learning and
3D-OES is one step in that direction.

In summary, the main contribution of this work is a graph neural network over 3D object
feature maps extracted from convolutional end-to-end differentiable 3D neural scene represen-
tations for forecasting 3D object motion. Graph networks are widely used in 2D object motion
interaction predictions [5, 51, 58, 144]. We show that by porting such relational reasoning in an
3D object-factorized space, object motion prediction can generalize across camera viewpoints,
lifting a major limitation of previous works on 2D object dynamics. Moreover, future and coun-
terfactual scenes can be easily generated by translating and rotating 3D object feature represen-
tations. In comparison to recent 3D particle graph networks [69, 83, 109], our work can operate
over input RGB-D images and not ground-truth particle graphs. In comparison to recent scene-
specific image-to-3D particle graph encoders [70], our image to 3D scene encoder can generalize
across environments with novel objects, novel number of objects, and novel camera viewpoints,
Moreover, our model presents effective sim-to-real transfer to a real-world robotic setup.

4.2 Object-Factorized Environment Simulators (3D-OES)
The architecture of 3D-OES is depicted in Figure 6.2. At each time step, our model takes as
input a single or a set of RGB-D images of the scene along with the corresponding camera views
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r̂0 = 0
<latexit sha1_base64="3JDdfaL1sZV3bbklt10yFC89wnI=">AAAB+HicbVBNS8NAEJ34WeNX1KOXxSJ4KhsR1INQ9OKxgrGFNoTNdtMu3XywuymU0H/ixYOKV3+KN/+NmzYHbX0w8Hhvhpl5YSa40hh/Wyura+sbm7Ute3tnd2/fOTh8UmkuKfNoKlLZCYligifM01wL1skkI3EoWDsc3ZV+e8yk4mnyqCcZ82MySHjEKdFGChynNyS6kNMAoxuEbdsOnDpu4BnQMnErUocKrcD56vVTmscs0VQQpbouzrRfEKk5FWxq93LFMkJHZMC6hiYkZsovZpdP0alR+ihKpalEo5n6e6IgsVKTODSdMdFDteiV4n9eN9fRlV/wJMs1S+h8UZQLpFNUxoD6XDKqxcQQQiU3tyI6JJJQbcIqQ3AXX14m3nnjuoEfLurN2yqNGhzDCZyBC5fQhHtogQcUxvAMr/BmFdaL9W59zFtXrGrmCP7A+vwBBNGRew==</latexit><latexit sha1_base64="3JDdfaL1sZV3bbklt10yFC89wnI=">AAAB+HicbVBNS8NAEJ34WeNX1KOXxSJ4KhsR1INQ9OKxgrGFNoTNdtMu3XywuymU0H/ixYOKV3+KN/+NmzYHbX0w8Hhvhpl5YSa40hh/Wyura+sbm7Ute3tnd2/fOTh8UmkuKfNoKlLZCYligifM01wL1skkI3EoWDsc3ZV+e8yk4mnyqCcZ82MySHjEKdFGChynNyS6kNMAoxuEbdsOnDpu4BnQMnErUocKrcD56vVTmscs0VQQpbouzrRfEKk5FWxq93LFMkJHZMC6hiYkZsovZpdP0alR+ihKpalEo5n6e6IgsVKTODSdMdFDteiV4n9eN9fRlV/wJMs1S+h8UZQLpFNUxoD6XDKqxcQQQiU3tyI6JJJQbcIqQ3AXX14m3nnjuoEfLurN2yqNGhzDCZyBC5fQhHtogQcUxvAMr/BmFdaL9W59zFtXrGrmCP7A+vwBBNGRew==</latexit><latexit sha1_base64="3JDdfaL1sZV3bbklt10yFC89wnI=">AAAB+HicbVBNS8NAEJ34WeNX1KOXxSJ4KhsR1INQ9OKxgrGFNoTNdtMu3XywuymU0H/ixYOKV3+KN/+NmzYHbX0w8Hhvhpl5YSa40hh/Wyura+sbm7Ute3tnd2/fOTh8UmkuKfNoKlLZCYligifM01wL1skkI3EoWDsc3ZV+e8yk4mnyqCcZ82MySHjEKdFGChynNyS6kNMAoxuEbdsOnDpu4BnQMnErUocKrcD56vVTmscs0VQQpbouzrRfEKk5FWxq93LFMkJHZMC6hiYkZsovZpdP0alR+ihKpalEo5n6e6IgsVKTODSdMdFDteiV4n9eN9fRlV/wJMs1S+h8UZQLpFNUxoD6XDKqxcQQQiU3tyI6JJJQbcIqQ3AXX14m3nnjuoEfLurN2yqNGhzDCZyBC5fQhHtogQcUxvAMr/BmFdaL9W59zFtXrGrmCP7A+vwBBNGRew==</latexit>

�p̂o
t<latexit sha1_base64="fDCxxuB1yiba64eRs8cC9vxa20c=">AAAB/XicbVBNS8NAEN3Urxq/ouLJy2IRPJVUBPVW9OKxgrGFJobNZtMu3XywOxFKKPhXvHhQ8er/8Oa/cdPmoK0PBh7vzTAzL8gEV2Db30ZtaXllda2+bm5sbm3vWLt79yrNJWUOTUUqewFRTPCEOcBBsF4mGYkDwbrB6Lr0u49MKp4mdzDOmBeTQcIjTgloybcO3JAJINgdEiiyyUPqg2mavtWwm/YUeJG0KtJAFTq+9eWGKc1jlgAVRKl+y87AK4gETgWbmG6uWEboiAxYX9OExEx5xfT8CT7WSoijVOpKAE/V3xMFiZUax4HujAkM1bxXiv95/RyiC6/gSZYDS+hsUZQLDCkus8Ahl4yCGGtCqOT6VkyHRBIKOrEyhNb8y4vEOW1eNu3bs0b7qkqjjg7RETpBLXSO2ugGdZCDKCrQM3pFb8aT8WK8Gx+z1ppRzeyjPzA+fwBI8ZSV</latexit><latexit sha1_base64="fDCxxuB1yiba64eRs8cC9vxa20c=">AAAB/XicbVBNS8NAEN3Urxq/ouLJy2IRPJVUBPVW9OKxgrGFJobNZtMu3XywOxFKKPhXvHhQ8er/8Oa/cdPmoK0PBh7vzTAzL8gEV2Db30ZtaXllda2+bm5sbm3vWLt79yrNJWUOTUUqewFRTPCEOcBBsF4mGYkDwbrB6Lr0u49MKp4mdzDOmBeTQcIjTgloybcO3JAJINgdEiiyyUPqg2mavtWwm/YUeJG0KtJAFTq+9eWGKc1jlgAVRKl+y87AK4gETgWbmG6uWEboiAxYX9OExEx5xfT8CT7WSoijVOpKAE/V3xMFiZUax4HujAkM1bxXiv95/RyiC6/gSZYDS+hsUZQLDCkus8Ahl4yCGGtCqOT6VkyHRBIKOrEyhNb8y4vEOW1eNu3bs0b7qkqjjg7RETpBLXSO2ugGdZCDKCrQM3pFb8aT8WK8Gx+z1ppRzeyjPzA+fwBI8ZSV</latexit><latexit sha1_base64="fDCxxuB1yiba64eRs8cC9vxa20c=">AAAB/XicbVBNS8NAEN3Urxq/ouLJy2IRPJVUBPVW9OKxgrGFJobNZtMu3XywOxFKKPhXvHhQ8er/8Oa/cdPmoK0PBh7vzTAzL8gEV2Db30ZtaXllda2+bm5sbm3vWLt79yrNJWUOTUUqewFRTPCEOcBBsF4mGYkDwbrB6Lr0u49MKp4mdzDOmBeTQcIjTgloybcO3JAJINgdEiiyyUPqg2mavtWwm/YUeJG0KtJAFTq+9eWGKc1jlgAVRKl+y87AK4gETgWbmG6uWEboiAxYX9OExEx5xfT8CT7WSoijVOpKAE/V3xMFiZUax4HujAkM1bxXiv95/RyiC6/gSZYDS+hsUZQLDCkus8Ahl4yCGGtCqOT6VkyHRBIKOrEyhNb8y4vEOW1eNu3bs0b7qkqjjg7RETpBLXSO2ugGdZCDKCrQM3pFb8aT8WK8Gx+z1ppRzeyjPzA+fwBI8ZSV</latexit>

�r̂o
t<latexit sha1_base64="6cU2rbvusRjc/EdqAKHus2Gfn/Q=">AAAB/XicbVBNS8NAEN3Urxq/ouLJy2IRPJVUBPVW9OKxgrGFJobNZtMu3XywOxFKKPhXvHhQ8er/8Oa/cdPmoK0PBh7vzTAzL8gEV2Db30ZtaXllda2+bm5sbm3vWLt79yrNJWUOTUUqewFRTPCEOcBBsF4mGYkDwbrB6Lr0u49MKp4mdzDOmBeTQcIjTgloybcO3JAJINgdEijk5CH1wTRN32rYTXsKvEhaFWmgCh3f+nLDlOYxS4AKolS/ZWfgFUQCp4JNTDdXLCN0RAasr2lCYqa8Ynr+BB9rJcRRKnUlgKfq74mCxEqN40B3xgSGat4rxf+8fg7RhVfwJMuBJXS2KMoFhhSXWeCQS0ZBjDUhVHJ9K6ZDIgkFnVgZQmv+5UXinDYvm/btWaN9VaVRR4foCJ2gFjpHbXSDOshBFBXoGb2iN+PJeDHejY9Za82oZvbRHxifP0wHlJc=</latexit><latexit sha1_base64="6cU2rbvusRjc/EdqAKHus2Gfn/Q=">AAAB/XicbVBNS8NAEN3Urxq/ouLJy2IRPJVUBPVW9OKxgrGFJobNZtMu3XywOxFKKPhXvHhQ8er/8Oa/cdPmoK0PBh7vzTAzL8gEV2Db30ZtaXllda2+bm5sbm3vWLt79yrNJWUOTUUqewFRTPCEOcBBsF4mGYkDwbrB6Lr0u49MKp4mdzDOmBeTQcIjTgloybcO3JAJINgdEijk5CH1wTRN32rYTXsKvEhaFWmgCh3f+nLDlOYxS4AKolS/ZWfgFUQCp4JNTDdXLCN0RAasr2lCYqa8Ynr+BB9rJcRRKnUlgKfq74mCxEqN40B3xgSGat4rxf+8fg7RhVfwJMuBJXS2KMoFhhSXWeCQS0ZBjDUhVHJ9K6ZDIgkFnVgZQmv+5UXinDYvm/btWaN9VaVRR4foCJ2gFjpHbXSDOshBFBXoGb2iN+PJeDHejY9Za82oZvbRHxifP0wHlJc=</latexit><latexit sha1_base64="6cU2rbvusRjc/EdqAKHus2Gfn/Q=">AAAB/XicbVBNS8NAEN3Urxq/ouLJy2IRPJVUBPVW9OKxgrGFJobNZtMu3XywOxFKKPhXvHhQ8er/8Oa/cdPmoK0PBh7vzTAzL8gEV2Db30ZtaXllda2+bm5sbm3vWLt79yrNJWUOTUUqewFRTPCEOcBBsF4mGYkDwbrB6Lr0u49MKp4mdzDOmBeTQcIjTgloybcO3JAJINgdEijk5CH1wTRN32rYTXsKvEhaFWmgCh3f+nLDlOYxS4AKolS/ZWfgFUQCp4JNTDdXLCN0RAasr2lCYqa8Ynr+BB9rJcRRKnUlgKfq74mCxEqN40B3xgSGat4rxf+8fg7RhVfwJMuBJXS2KMoFhhSXWeCQS0ZBjDUhVHJ9K6ZDIgkFnVgZQmv+5UXinDYvm/btWaN9VaVRR4foCJ2gFjpHbXSDOshBFBXoGb2iN+PJeDHejY9Za82oZvbRHxifP0wHlJc=</latexit>
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M̄t+1
<latexit sha1_base64="EvuELZ/Ddf4RSllF2Pko3KHJHTA=">AAACAXicbVBNS8NAEN3Urxq/op7ES7AIglASEdRb0YsXoYKxhSaEzXbTLt3dhN2NUELw4l/x4kHFq//Cm//GTZuDtj4YeLw3w8y8KKVEKsf5NmoLi0vLK/VVc219Y3PL2t65l0kmEPZQQhPRjaDElHDsKaIo7qYCQxZR3IlGV6XfecBCkoTfqXGKAwYHnMQEQaWl0NrzIyhyn0E1FCy/KYowV8duYZpmaDWcpjOBPU/cijRAhXZoffn9BGUMc4UolLLnOqkKcigUQRQXpp9JnEI0ggPc05RDhmWQT14o7EOt9O04Ebq4sifq74kcMinHLNKd5a1y1ivF/7xepuLzICc8zRTmaLoozqitErvMw+4TgZGiY00gEkTfaqMhFBApnVoZgjv78jzxTpoXTef2tNG6rNKog31wAI6AC85AC1yDNvAAAo/gGbyCN+PJeDHejY9pa82oZnbBHxifP5hllnA=</latexit><latexit sha1_base64="EvuELZ/Ddf4RSllF2Pko3KHJHTA=">AAACAXicbVBNS8NAEN3Urxq/op7ES7AIglASEdRb0YsXoYKxhSaEzXbTLt3dhN2NUELw4l/x4kHFq//Cm//GTZuDtj4YeLw3w8y8KKVEKsf5NmoLi0vLK/VVc219Y3PL2t65l0kmEPZQQhPRjaDElHDsKaIo7qYCQxZR3IlGV6XfecBCkoTfqXGKAwYHnMQEQaWl0NrzIyhyn0E1FCy/KYowV8duYZpmaDWcpjOBPU/cijRAhXZoffn9BGUMc4UolLLnOqkKcigUQRQXpp9JnEI0ggPc05RDhmWQT14o7EOt9O04Ebq4sifq74kcMinHLNKd5a1y1ivF/7xepuLzICc8zRTmaLoozqitErvMw+4TgZGiY00gEkTfaqMhFBApnVoZgjv78jzxTpoXTef2tNG6rNKog31wAI6AC85AC1yDNvAAAo/gGbyCN+PJeDHejY9pa82oZnbBHxifP5hllnA=</latexit><latexit sha1_base64="EvuELZ/Ddf4RSllF2Pko3KHJHTA=">AAACAXicbVBNS8NAEN3Urxq/op7ES7AIglASEdRb0YsXoYKxhSaEzXbTLt3dhN2NUELw4l/x4kHFq//Cm//GTZuDtj4YeLw3w8y8KKVEKsf5NmoLi0vLK/VVc219Y3PL2t65l0kmEPZQQhPRjaDElHDsKaIo7qYCQxZR3IlGV6XfecBCkoTfqXGKAwYHnMQEQaWl0NrzIyhyn0E1FCy/KYowV8duYZpmaDWcpjOBPU/cijRAhXZoffn9BGUMc4UolLLnOqkKcigUQRQXpp9JnEI0ggPc05RDhmWQT14o7EOt9O04Ebq4sifq74kcMinHLNKd5a1y1ivF/7xepuLzICc8zRTmaLoozqitErvMw+4TgZGiY00gEkTfaqMhFBApnVoZgjv78jzxTpoXTef2tNG6rNKog31wAI6AC85AC1yDNvAAAo/gGbyCN+PJeDHejY9pa82oZnbBHxifP5hllnA=</latexit>

M̄t+2
<latexit sha1_base64="KH43hOp7KNJbzUooY8Xsn0ycSRM=">AAACAXicbVBNS8NAEN34WeNX1JN4CRZBEEpSBPVW9OJFqGBsoQlhs920S3c3YXcjlBC8+Fe8eFDx6r/w5r9x0+agrQ8GHu/NMDMvSimRynG+jYXFpeWV1dqaub6xubVt7ezeyyQTCHsooYnoRlBiSjj2FFEUd1OBIYso7kSjq9LvPGAhScLv1DjFAYMDTmKCoNJSaO37ERS5z6AaCpbfFEWYq5NmYZpmaNWdhjOBPU/citRBhXZoffn9BGUMc4UolLLnOqkKcigUQRQXpp9JnEI0ggPc05RDhmWQT14o7COt9O04Ebq4sifq74kcMinHLNKd5a1y1ivF/7xepuLzICc8zRTmaLoozqitErvMw+4TgZGiY00gEkTfaqMhFBApnVoZgjv78jzxmo2LhnN7Wm9dVmnUwAE4BMfABWegBa5BG3gAgUfwDF7Bm/FkvBjvxse0dcGoZvbAHxifP5nslnE=</latexit><latexit sha1_base64="KH43hOp7KNJbzUooY8Xsn0ycSRM=">AAACAXicbVBNS8NAEN34WeNX1JN4CRZBEEpSBPVW9OJFqGBsoQlhs920S3c3YXcjlBC8+Fe8eFDx6r/w5r9x0+agrQ8GHu/NMDMvSimRynG+jYXFpeWV1dqaub6xubVt7ezeyyQTCHsooYnoRlBiSjj2FFEUd1OBIYso7kSjq9LvPGAhScLv1DjFAYMDTmKCoNJSaO37ERS5z6AaCpbfFEWYq5NmYZpmaNWdhjOBPU/citRBhXZoffn9BGUMc4UolLLnOqkKcigUQRQXpp9JnEI0ggPc05RDhmWQT14o7COt9O04Ebq4sifq74kcMinHLNKd5a1y1ivF/7xepuLzICc8zRTmaLoozqitErvMw+4TgZGiY00gEkTfaqMhFBApnVoZgjv78jzxmo2LhnN7Wm9dVmnUwAE4BMfABWegBa5BG3gAgUfwDF7Bm/FkvBjvxse0dcGoZvbAHxifP5nslnE=</latexit><latexit sha1_base64="KH43hOp7KNJbzUooY8Xsn0ycSRM=">AAACAXicbVBNS8NAEN34WeNX1JN4CRZBEEpSBPVW9OJFqGBsoQlhs920S3c3YXcjlBC8+Fe8eFDx6r/w5r9x0+agrQ8GHu/NMDMvSimRynG+jYXFpeWV1dqaub6xubVt7ezeyyQTCHsooYnoRlBiSjj2FFEUd1OBIYso7kSjq9LvPGAhScLv1DjFAYMDTmKCoNJSaO37ERS5z6AaCpbfFEWYq5NmYZpmaNWdhjOBPU/citRBhXZoffn9BGUMc4UolLLnOqkKcigUQRQXpp9JnEI0ggPc05RDhmWQT14o7COt9O04Ebq4sifq74kcMinHLNKd5a1y1ivF/7xepuLzICc8zRTmaLoozqitErvMw+4TgZGiY00gEkTfaqMhFBApnVoZgjv78jzxmo2LhnN7Wm9dVmnUwAE4BMfABWegBa5BG3gAgUfwDF7Bm/FkvBjvxse0dcGoZvbAHxifP5nslnE=</latexit>

action
EGRNN

<latexit sha1_base64="WW8T085LHisq+bZkV7828OE6z+w=">AAAB+XicbVBPS8MwHE3nvzn/dXr0EhyCp9GJoN6GInoaU6wbbKWkWbqFJWlJUmXUfhQvHlS8+k28+W1Mtx50+iDweO/34/fygphRpR3nyyotLC4tr5RXK2vrG5tbdnX7TkWJxMTFEYtkN0CKMCqIq6lmpBtLgnjASCcYn+d+555IRSNxqycx8TgaChpSjLSRfLt64ad9jvRI8vTyptXKMt+uOXVnCviXNApSAwXavv3ZH0Q44URozJBSvYYTay9FUlPMSFbpJ4rECI/RkPQMFYgT5aXT6BncN8oAhpE0T2g4VX9upIgrNeGBmcxTqnkvF//zeokOT7yUijjRRODZoTBhUEcw7wEOqCRYs4khCEtqskI8QhJhbdqqmBIa81/+S9zD+mnduT6qNc+KNspgF+yBA9AAx6AJrkAbuACDB/AEXsCr9Wg9W2/W+2y0ZBU7O+AXrI9vtHCT1g==</latexit><latexit sha1_base64="WW8T085LHisq+bZkV7828OE6z+w=">AAAB+XicbVBPS8MwHE3nvzn/dXr0EhyCp9GJoN6GInoaU6wbbKWkWbqFJWlJUmXUfhQvHlS8+k28+W1Mtx50+iDweO/34/fygphRpR3nyyotLC4tr5RXK2vrG5tbdnX7TkWJxMTFEYtkN0CKMCqIq6lmpBtLgnjASCcYn+d+555IRSNxqycx8TgaChpSjLSRfLt64ad9jvRI8vTyptXKMt+uOXVnCviXNApSAwXavv3ZH0Q44URozJBSvYYTay9FUlPMSFbpJ4rECI/RkPQMFYgT5aXT6BncN8oAhpE0T2g4VX9upIgrNeGBmcxTqnkvF//zeokOT7yUijjRRODZoTBhUEcw7wEOqCRYs4khCEtqskI8QhJhbdqqmBIa81/+S9zD+mnduT6qNc+KNspgF+yBA9AAx6AJrkAbuACDB/AEXsCr9Wg9W2/W+2y0ZBU7O+AXrI9vtHCT1g==</latexit><latexit sha1_base64="WW8T085LHisq+bZkV7828OE6z+w=">AAAB+XicbVBPS8MwHE3nvzn/dXr0EhyCp9GJoN6GInoaU6wbbKWkWbqFJWlJUmXUfhQvHlS8+k28+W1Mtx50+iDweO/34/fygphRpR3nyyotLC4tr5RXK2vrG5tbdnX7TkWJxMTFEYtkN0CKMCqIq6lmpBtLgnjASCcYn+d+555IRSNxqycx8TgaChpSjLSRfLt64ad9jvRI8vTyptXKMt+uOXVnCviXNApSAwXavv3ZH0Q44URozJBSvYYTay9FUlPMSFbpJ4rECI/RkPQMFYgT5aXT6BncN8oAhpE0T2g4VX9upIgrNeGBmcxTqnkvF//zeokOT7yUijjRRODZoTBhUEcw7wEOqCRYs4khCEtqskI8QhJhbdqqmBIa81/+S9zD+mnduT6qNc+KNspgF+yBA9AAx6AJrkAbuACDB/AEXsCr9Wg9W2/W+2y0ZBU7O+AXrI9vtHCT1g==</latexit>

: an input RGB-D image  

     observed from viewpoint  
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Figure 4.1: 3D-OES predict 3D object motion under agent-object and object-object interactions,
using a graph neural network over 3D feature maps of detected objects. Node features capture
the appearance of an object node and its immediate context, and edge features capture relative
3D locations between two nodes, so the model is translational invariant. After message passing
between nodes, the node and edge features are decoded to future 3D rotations and translations
for each object.

to capture them, and encodes these inputs into a 3D scene feature representation using Geometry-
Aware Recurrent Networks (GRNNs) introduced in Chapter 2. Then, it detects 3D object boxes
in the inferred 3D scene representation, and crops the scene representation to obtain a set of
object-centered 3D feature maps (see Section 2.2.2 for details of the object detector). A graph
neural network over the object nodes will take as inputs object appearances and the agent actions
and predict the future 3D rotation and translation for each object (Section 4.2.1). We will assume
for now rigid objects, and we discuss in Chapter 9 how to extend our framework to deformable
and articulated objects. Our model generates future scenes by warping object-centric 3D feature
maps with the predicted cumulative 3D object motion. These synthesized future 3D scene feature
maps, though not directly interpretable, can be decoded to RGB images from any desired camera
viewpoints via a neural renderer to aid interpretability. We use long-term simulations of 3D-
OES to generate action plans for pushing objects to desired locations in cluttered environments
using model predictive control (Section 4.2.2). We apply our model to learn dynamics of objects
pushed around on a table surface and objects falling on top of others. At training time, we assume
access to 3D object bounding boxes to train our 3D object detector.

Differentiable 2D-to-3D lifting with Geometry-Aware Recurrent Networks (GRNNs) Our
model use Geometry-Aware Recurrent Networks (GRNNs) introduced in Chapter 2 to infer 3D
scene feature representations from RGB-D images. We will denote the 3D scene feature as M ∈
Rw×h×d×c where w, h, d, c denote width, height, depth and number of channels, respectively.
Given an input video, GRNNs estimate the relative camera poses between frames, and transform
the inferred 3D features map Mt to a world coordinate frame to cancel the camera egomotion,
before accumulating it with 3D feature maps across time steps. In this way, information from 2D
pixels that correspond to the same 3D physical point end up nearby in the 3D neural map. We use
such cross-view registration in case we have access to concurrent multiple camera views for the
first timestep of our simulations. Upon training, GRNNs map RGB-D images or a single RGB-D
image to a complete 3D feature map of the scene they depict, i.e., the model learns to imagine
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the missing or occluded information from the input view. We denote this 2D-to-3D mapping as
M = GRNN(I1, ..., It), where M ∈ Rw×h×d×c and It = {dt, vt} denotes the RGB-D image dt
and the corresponding camera pose vt at time step t. Note that the input can be a single RGB-D
view, in which case M = GRNN(I). For further details on GRNNs, please refer to Chapter 2.
View prediction for visualizing latent 3D neural simulations We train GRNNs end-to-end for
RGB view regression in videos of static scenes and moving cameras as proposed in Chapter 2
Section 2.2.1, by neurally projecting the 3D scene feature maps and mapping them to 2D images.
Our decoder involves a differentiable 3D-to-2D projection module that projects the 3D scene
feature representation after orienting it to the query camera viewpoint. The projected features
are then decoded into images through a learned decoder. In this way, the trained projection and
decoding module can be used to interpret and visualize the 3D latent feature space with view-
specific 2D images, given any desired camera viewpoint.
3D object detection Our model uses a 3D object detector to map the 3D scene neural map M to
a variable number of object axis-aligned 3D boxes and corresponding 3D segmentation masks,
i.e., binary 3D voxel occupancies: O = Det(M),O = {b̂o = (pox, p

o
y, p

o
z, w

o, ho, do) ∈ R6,mo ∈
{0, 1}wo×ho×do , o = 1 · · · |O|}, where pox, p

o
y, p

o
z stands for the 3D box centroid and wo, ho, do

stands for 3d box size. Its architecture is similar to Mask R-CNN [38] but uses 3D input and
output instead of 2D. Given an object 3D centroid pox, p

o
y, p

o
z, we crop the 3D scene feature map M

using a corresponding fixed-size axis-aligned 3D bounding box to obtain corresponding object-
centric feature maps Mo, o = 1 · · · |O| for all objects in the scene. Please refer to Chapter 2
Section 2.2.2 for more details about the object detector.

4.2.1 3D Object Graph Neural Networks for Motion Forecasting

Objects are the recipient of forces exercised by active agents; meanwhile, objects themselves
carry momentum and cause other objects to move. How can we model cross-object dynamic
relationships in a way that generalizes with varying number of objects and arbitrary chains of
interactions?

We consider a graph interaction network [5] over the graph comprised of the detected objects
and the agent’s end-effector. Inputs to the network are the object-centric feature maps, one per
object node, the objects’ velocities, the agent’s action represented as a 3D translation, as well as
edge features, which incorporate the relative 3D displacements between the nodes. The outputs
of the network are the 3D translations δp̂ and 3D relative rotations δr̂ of the object nodes at
the next time step. During message passing in the constructed graph, edge and node features are
encoded and concatenated, and messages from neighboring nodes are aggregated via summation.
Our graph network is trained supervised to minimize a standard regression loss for the next time
step.

Forward unrolling with object appearance permanence To predict long term results of
actions, as well as results of action sequences, the model needs to be unrolled forward in time as
commonly done in related works [5, 6, 51, 58, 144]. Different from previous works though, 3D-
OES can synthesize 3D neural scenes of future timesteps by warping (translating and rotating)
object feature maps obtained from the first timestep—as opposed to the ones obtained from
the predicted scene of the previous timestep—according to cumulative 3D motion predictions.
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Specifically, given predicted 3D object motions (δp̂t, δr̂t) at an unrolling step t, we estimate the
cumulative 3D rotation and translation of the object with respect to the first timestep:

p̂t = p̂t−1 + δp̂t, r̂t = r̂t−1 + δr̂t, t = 1 · · ·T, p̂0 = 0 r̂0 = 0. (4.1)

where T denotes the number of unrolling steps thus far. Then, given 3D object segmentation
masks mo and object-centric 3D feature maps Mo obtained by the 3D object detector from the
input RGB-D image, we rotate and translate the object masks and 3D feature maps using the
cumulative 3D rotation r̂t and 3D translation p̂t using 3D spatial transformers. We synthesize
a new 3D scene feature map M̄t by placing each transformed object-centric 3D feature map at
its predicted 3D location: M̄t =

∑|O|
o=1 Dec(Rot(mo, r̂ot ) � Rot(Mo, r̂ot ), p̂

o
t ), where superscript

o denotes the object identity, Rot(·, r) denotes 3D rotation by angle r, � denotes voxel-wise
multiplication, and Dec(M, p) denotes adding a feature tensor M at a 3D location p. This syn-
thesized scene map is used for neural rendering to help interpret the predicted scene at t. To
obtain the inputs for our graph neural network at the next time step, we can potentially crop the
synthesized 3D scene map M̄t at the predicted 3D location. However, we find that directly using
object features obtained in the first time step and including accumulative relative object pose as
part of the object state works better in practice.

Our graph neural motion forecaster is trained through forward unrolling. Error of each time
step is back-propagated through time. More implementation details are included in Appendix
Section C.1.

4.2.2 Model Predictive Control with 3D-OES
Action-conditioned dynamics models, such as 3D-OES, simulate the results of an agent’s ac-
tions and permit successful control in zero-shot setups: achieving a specific goal in a novel
scene without previous practice. We apply our model for pushing objects to desired locations
in cluttered environments with model predictive control. Given an input RGB-D image I that
contains multiple objects, a goal configuration is given in terms of the desired 3D location of an
object xogoal. 3D-OES infer the scene 3D feature map M = GRNN(I) and detects the objects
present in the scene. We then unroll the model forward in time using randomly sampled action
sequences, as described in Section 4.2.1. We evaluate each action sequence based on the Eu-
clidean distance from the goal to the predicted location x̂oT (after T time steps) for the designated
object. We execute the first action of the best action sequence and repeat [126]. Our model
combines 3D perception and planning using learned object dynamics in the inferred 3D scene
feature map. While most previous works choose bird’s eye viewpoints to minimize cross-object
or robot-object occlusions [24], our control framework can use any camera viewpoint, thanks
to its ability to map input 2.5D images to complete, viewpoint-invariant 3D scene feature maps.
We empirically validate this claim in our experimental section.

4.3 Experiments
We evaluate our model on its prediction accuracy for single- and multi-step object motion fore-
casting under multi-object interactions, as well as on its performance in model predictive control
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for pushing objects to desired locations on a table surface in the presence of obstacles. We ablate
generalization of our model under varying camera viewpoints and varying number of object and
varying object appearance. Our model is trained to predict 3D object motion during robot push-
ing and falling in the Bullet Physics Simulator. For pushing, we have objects pushed by a Kuka
robotic arm and record RGB-D video streams from multiple viewpoints. We create scenes using
31 different 3D object meshes, including 11 objects from the MIT Push dataset [146] and 20
objects randomly selected from camera, mug, bowl, and bed object categories of the ShapeNet
dataset [9]. At training time, each scene contains at most two objects. We test with varying
number of objects. For falling, we use 3D meshes of the objects introduced in Janner et al. [51],
including a variety of shapes. We randomly select 1-3 objects and randomly place them on a
table surface, and let one object fall from a height. We train our model with three camera views,
and use either three or one randomly selected views as input during test time.

We compare 3D-OES against a set of baselines designed to cover representative models in the
object dynamics literature: (1) graph-XYZ, a model that mimics Interaction Networks [4, 5, 141].
It is a graph neural network in which object features are the 3D object centroid locations and their
velocities, and edge features are their relative 3D locations. (2) graph-XYZ-image, a model using
graph neural network over 3D object centroid locations and object-centric 2D image CNN feature
embeddings, similar to Ye et al. [144]. The model further combines camera pose information
with the node features. (3) Visual Foresight (VF) [20], a model that uses the current frame and
the action of the agent to predict future 2D frames by “moving pixels” based on predicted 2D
pixel flow fields. (4) PlaNet [32], a model that learns a scene-level embedding by predicting
future frames and the reward given the current frame.

We compare our model against baselines graph-XYZ and graph-XYZ-image on both motion
forecasting and model predictive control. Since VF and PlaNet forecast 2D pixel motion and do
not predict explicit 3D object motion, we compare against them on the pushing task with model
predictive control.

Implementation Details for Baselines Here we describe the baselines discussed in Section 4
in detail.

1. graph-XYZ, a model that uses the 3D object centroid (X, Y, Z) as object state, and incorpo-
rate cross-object interactions for forecasting 3D translation using graph convolutions over
a object graph, similar to Andrychowicz et al. [4] and Wu et al. [141]. Since the canonical
pose of an object is undefined, object orientation is not included in the object state. This
model neglects object shape and appearance. The graph networks used in all baselines fol-
low the exact design as the one we use in our model (4-layer MLPs for both the node and
edge encoder). The only difference is that its inputs do not contain any object appearance
features.

2. graph-XYZ-image, a model that uses the 3D object centroid (X, Y, Z) and object-centric
2D image feature embeddings for forecasting 3D translation. This baseline model extracts
2D CNN features from each image, concatenates the features with the camera viewpoint,
and transforms the combined features into an object appearance feature vector. The feature
vector is concatenated with the 3D object centroid and fed into a graph network (identical
to the one used in graph-XYZ) to predict future object 3D translation. When taking multiple
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views as inputs, the model takes the average of the appearance feature vectors across views.

3. Visual Foresight (VF) [20], a model that uses the current frame and the action of the agent
to predict future 2D frames by “moving pixels” based on predicted 2D pixel flow fields. It
is based on the publicly available code of Ebert et al. [20] that uses such frame predictive
model to infer an action trajectory that brings an object pixel to the desired (2D) location
in the image space.

4. PlaNet[32], a model that learns a scene-level embedding by predicting future frames and
the reward given the current frame. PlaNet only deals with single-goal tasks and does not
apply to our multi-goal pushing task. We extend it to our setting by appending the goal state
to the observation. In practice, we augment the latent state vector produced from its state
encoders first fully connected layer with a randomly selected goal, and provide the model
with reward computed correspondingly. The reward at each timestep is the computed as
the negative of the distance-to-goal.

Note that both VF and PlaNet are self-supervised models that do not require ground-truth object
states during training. However, we believe that since such supervision is readily accessible in
simulation, we should leverage them to push the performance of the learned dynamics model.
Self-supervised models are more favored when trained directly in the real world, where strong
supervisions are not available, but as we showed in our experiments, our model trained solely in
simulation can transfer reasonably well to the real world without any fine-tuning. As a result,
we believe including the comparison with such self-supervised baselines is arguably fair and
reasonable.

4.3.1 Data collection details

Pushing Our training data contains RGB-D video streams where the robot pushes objects which
in turn can collide and push other objects on the table. We create scenes using 31 different 3D
object meshes, including 11 objects from the MIT Push dataset [146] and 20 objects selected
from four categories (camera, mug, bowl and bed) in the ShapeNet Dataset [9]. We split our
dataset so that 24 objects are used during training. At test time, we evaluate the prediction error
on the remaining 7 objects. At training time each scene contains at most two (potentially inter-
acting) objects. At test time, we vary the number of objects from one up to five. We randomize
the textures of the objects during training to improve transferability to the real world [130]. We
consider a simulated Kuka robotic arm equipped with a single rod (as shown in Figure 3 of the
main paper. The objects can move on a planar table surface of size 0.6m × 0.6m when pushed
by the arm, or by other objects. We collect training interaction trajectories by instantiating the
gripper nearby a (known) 3D object segmentation mask. We sample random pushing action se-
quences with length of 5 timesteps, where each action is a horizontal displacement of the robot’s
end-effector ranging from 3cm to 6cm, and each timestep is defined to be 200ms. We record
objects displacement 1 sec after the push. We place cameras at 27 nominal different views in-
cluding 9 different azimuth angels ranging from the left side of the agent to the right side of
the agent combining with 3 different elevation angles from 20, 40, 60 degrees. All cameras are
looking at the 0.1m above the center of the table, and are 1 meter away from the look-at point.
At each timestep, all cameras are purturbed randomly around their nominal viewpoints, and we
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record all 27 views. At training time, our model consumes three randomly selected concurrent
camera viewpoints as input. At test time, we use the 3D object detector to predict the 3D object
segmentation mask, and our model is tested with either three or a single view as input, all ran-
domly selected. All images are 128 × 128. There are 5000 pushing trajectories in the training
data, and 200 pushing trajectories in the test data.

Falling We use the 3D meshes of the block objects introduced in Janner et al. [51], which in-
cludes cones, cylinders, rectangles, tetrahedrons, and traingles with a variety of shapes. We
randomly select 1-3 objects and initialize their position by placing them on the table surface, and
let one object falls freely from the air. One timestep is defined to be 40ms. All other settings are
identical to the settings for pushing.

4.3.2 Action-Conditioned 3D Object Motion Forecasting
We evaluate the performance of our model and the baselines in single- and multi-step 3D motion
forecasting for pushing and falling on novel objects in Tables 4.1 and 4.2 in terms of translation
and rotation error. We evaluate the following ablations: i) using 1 or 3 camera views at the first
time step, ii) using goundtruth 3D object boxes (gt-bbox) or 3D boxes predicted by our 3D detec-
tor, iii) varying camera viewpoints (random) versus keeping a single fixed camera viewpoint at
train and test time. Our model outperforms the baselines both in translation and rotation predic-
tion accuracy. When tested with object boxes predicted by the 3D object detector as opposed to
ground-truth 3D boxes, our model is the least affected. graph-XYZ-image performs on par with
or even worse than graph-XYZ, indicating that it does not gain from having access to additional
appearance information. We hypothesize this is due to the way appearance and camera pose
information are integrated in this baseline: the model simply treats camera pose information as
additional input, as opposed to our model, which leverages geometry-aware representations that
retain the geometric structure of the scene.

Multi-step forward unrolling The graph-XYZ baseline can be easily unrolled forward in
time without much error accumulation since it does not use any appearance features. Still, as
seen in Tables 4.1 and 4.2, our model outperforms it. graph-XYZ is oblivious to the appearance
of the object and thus cannot effectively adapt its predictions to different object shapes.

Varying number of camera views Our model accepts a variable number of views as input,
and improves when more views available; yet, it can accurately predict future motion even from
a single RGB-D view. The prediction error of our single view model is only slightly higher than
the model using three random views as input. As shown in Table 4.1, the graph-XYZ-image
baseline performs the worst and does not improve with more views are available. We believe
this is due to the geometry-unaware way of combining multiview information by concatenation,
though the model does have access to camera poses of the input images.

Varying camera viewpoint versus fixed camera viewpoint We show in Table 4.1 (last 2
rows) that graph-XYZ-image can achieve much better performance when trained and tested on
a single fixed camera viewpoint. This is a setting widely used in the recently popular learning-
based visual-motor control literature [20, 26, 90, 143], which restricts the corresponding models
to work only under carefully controlled environments with a fixed camera viewpoint, while ours
performs competitively to these model but also handles arbitrary camera viewpoints.
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Table 4.1: 3D object motion prediction test error during object pushing in scenes with two
objects for 1,3, and 5 timestep prediction horizon.
Experiment Setting Model T=1 T=3 T=5

3 views (random, novel) graph-XYZ [5] translation(mm) 4.6 32.1 66.3

+ gt-bbox rotation(degree) 2.8 16.7 26.4

graph-XYZ-image [144] translation(mm) 6.0 39.3 69.7

rotation(degree) 3.4 29.8 30.7

Ours translation(mm) 3.6 22.5 43.4

rotation(degree) 2.5 12.0 20.6

1 view (random, novel) graph-XYZ-image [144] translation(mm) 6.0 39.3 69.7

+ gt-bbox rotation(degree) 3.4 29.8 30.7

Ours translation(mm) 4.1 23.6 43.8

rotation(degree) 3.1 12.2 20.3

1 view (random, novel) graph-XYZ [5] translation(mm) 6.7 35.4 68.2
+ predicted-bbox rotation(degree) 3.0 20.1 30.32

graph-XYZ-image [144] translation(mm) 6.6 43.1 71.2

rotation(degree) 3.6 31.8 32.4

Ours translation(mm) 4.3 25.2 47.0

rotation(degree) 2.7 12.1 19.7

1 view (fixed, same as train) graph-XYZ-image [144] translation(mm) 5.1 29.6 54.5

+ predicted-bbox rotation(degree) 2.6 11.0 16.9

Table 4.2: 3D object motion prediction test error during object falling in scenes with three
to four objects for 1,3, and 5 timestep prediction horizon.

Experiment Setting Model T=1 T=3 T=5
1views (random, novel) graph-XYZ [5] translation(mm) 5.2 11.7 278.6

+ predicted-bbox rotation(degree) 5.7 10.4 43.28

graph-XYZ-image [144] translation(mm) 8.4 17.0 620.2

rotation(degree) 9.2 16.6 117.9

Ours translation(mm) 5.0 13.1 16.4

rotation(degree) 6.1 12.6 18.7

4.3.3 Visualization of the 3D motion predictions

In Figure 4.2, we show qualitative comparison on long term motion prediction results produced
by unrolling our model and the baseline model forward in time. Our model generalizes to novel
objects and scenes with varying number of objects, though trained only on 2 object scenes. We
show in Figure 4.3 rendered physics simulation videos using the proposed model. The latent
3D feature map of the proposed model is interpretable in the sense that we can render human-
interpretable RGB images from the feature map using the learned neural image decoder. More
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importantly, we can render such simulation videos from any arbitrary view, and the videos cap-
tured from different views are consistent with each other.
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Figure 4.2: Forward unrolling of our dynamics model and the graph-XYZ baseline. Left:
pushing. Right: falling. In the top row, we show (randomly sampled) camera views that we use
as input to our model. The second row shows the ground-truth motion of the object from the front
view. Rows 3, 4 show the predicted object motion from our model and the graph-XYZ baseline
from the same front camera viewpoint. Our model better matches the ground-truth object motion
than the graph-XYZ baseline. The latter does not capture object appearance in any way.

4.3.4 Neural rendering and counterfactual simulations

3D-OES not only can simulate the future state of the scene, it also provides us a way to interpret
the latent 3D representation and a space to run counterfactual experiements. We visualize the
latent 3D feature map by neurally projecting it from a camera viewpoint to an image through a
learned neural decoder, and show the resulting images in Figure 4.4. We also show that our 3D
representation allows us to alter the observed scene and run conterfactual simulations in multiple
ways.

4.3.5 Pushing with Model Predictive Control (MPC)

We test 3D-OES on pushing objects to desired locations using MPC and report the results in
Table 4.3. For our model and graph-XYZ-image, we use a single randomly sampled input view.
For VF and PlaNet, we use a fixed top-down view for both training and testing as we found they
only work reasonably well with a fixed viewpoint. Our model outperforms all baselines by a
large margin. Videos of pushing object to desired locations in the presence of multiple obstacles
are available on our project website: https://zhouxian.github.io/3d-oes/.

.

Implementation Details Pushing without obstacle We test the performance of our model
with MPC to push objects to desired locations. We run 50 experiments in the Bullet simulator.
For each testing sample, we place either 1 or 2 objects in the 0.6m× 0.6m workspace randomly,
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Figure 4.3: Neurally rendered simulation videos from three different views Left: groundtruth
simulation videos from the dataset. The simulation is generated by the Bullet Physics Simulation.
Right: neurally rendered simulation video from the proposed model. Our model forcasts the
future latent feature by explicitly warping the latent 3D feature maps, and we pass these warped
latent 3D feature maps through the learned 3D-to-2D image decoder to decode them into human
interpretable images. We can render the images from any arbitrary views and the images are
consistent across views.
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Figure 4.4: Neurally rendered simulation videos of counterfactual experiments. The first
row shows the ground truth simulation video from the dataset. Only the first frame in this video
is used as input to our model to produce the predicted simulations. The second row shows the
ground truth simulation from a query view. Note that our model can render images from any
arbitrary view. We choose this particular view for better visualization. The third row shows the
future prediction from our model given the input image. The following rows show the simulation
after manipulating an objects (in the blue box) according the instruction on the left most column.

and sample a random goal for each object. The maximum distance of the goal to the initial po-
sition for each object is capped at 0.25m. For our model and graph-XYZ-image, we use a single
randomly sampled view. For VF and PlaNet, we use a fixed top-down view for both training and
testing. We set the maximum number of steps for each action sequence to be 10, and evaluate
30 random action sequences before taking an action. We use planning horizon of 1 since greedy
action selection suffices for this task. The results are reported in Table 3 in the main paper. Note
that we also train and test variants of VF and PlaNet to take observations from varying camera
viewpoints, together with camera pose information. However, they both fail completely on this
task.

Collision-free pushing In order to test our models multi-step prediction performance, we evalu-
ate our model on pushing in scenes with randomly sampled obstacles, and the robot is required to
push an object to desired goal without colliding into any obstacle. For quantitative evaluation, we
randomly place an object of interest and a goal position in the planar workspace. One obstacle
object is placed between them with a small perturbation, so that there exists no straight collision-
free path to reach the goal. The distance from the object to its goal is uniformly sampled from
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Table 4.3: Success rate for pushing objects to target locations.
graph-XYZ [5] graph-XYZ-image [144] VF[20] PlaNet[32] Ours Ours-Real

0.76 0.70 0.32 0.16 0.86 0.78

t

goal

Figure 4.5: Collision-free pushing on a real-world setup. The task is to push a mouse to a
target location without colliding into any obstacles. Our robot can successfully complete the task
with 3 push attempts.

the range [0.24m, 0.40m]. Similarly, we run 50 examples, and use only one randomly selected
camera view as input to our model. We evaluate 60 randomly sampled action sequences with
length of 25 steps, and use a planning horizon of 10 steps. We achieve a success rate of 0.68 for
this task.

We randomly place multiple obstacles in the scene for quantitative evaluation while ensuring
existence of collision-free path is non-trivial. For both with- and without- obstacle pushing, it
is considered a successful pushing sequence if all objects end up within 4cm (about half of the
average object size) from the target positions on average.

4.3.6 Sim-to-Real Transfer
We train our model solely in simulation and test it on object pushing control tasks on a real
Baxter platform equipped with a rod-shaped end-effector, similar to the setting in the Bullet
simulation (Figure 4.5). We attached a Intel RealSense D435 RGB-D camera to the robot’s left
hand, and use only one RGB-D view as input for this experiment. The pose of the camera is
different from those seen during training. Please refer to Appendix (Section C.3) for details
of our real-world setup, objects selection, and 3D detector training. We report the success rate
of real-world pushing in Table 4.3 (Ours-Real). Our model achieves similar success rates for
pushing in simulation and in the real world. Since geometry information is shared by simulation
and the real world by a large extent, and our model combines the viewpoint-invariant property
of the geometry-aware representation and an object-factorized structure, it presents good sim-
to-real transferrability. In Figure 4.5, we qualitatively show pushing objects along collision-free
trajectories in complex scenes in the real-world setup. More results are available on our project
website: https://zhouxian.github.io/3d-oes/.

Implementation Details We use a Baxter robot equipped with a rod-shaped end-effector at-
tached to its right hand, similar to the setting in the Bullet simulation. One Intel RealSense D435
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Figure 4.6: Real-world setup with Baxter
Figure 4.7: Objects for real-world experiments

RGB-D camera is attached to the robot’s left hand, and we use only one view for our experiment,
as shown in Figure 4.6.

Due to reachability considerations, we down-scaled the size of the planar workspace by twice
from the one in simulation, resulting a workspace of 0.3m×0.3m. For a fair comparison, we also
down-scaled with the same factor the object-to-goal distance, length of horizontal movement per
action step, and size of the tolerance for determining success/failure. We pick 20 objects with
size of 5 to 10cm, which are commonly seen in a office setting, including fruits, wooden blocks,
and stationery, and evaluate 5 pushing samples for each of them. Some of objects selected are
shown in Figure 4.7.

For object detection in the real-world, we train our 3D detector using simulated data, and
fine-tune it using a small set of real data (100 images capturing 25 distinct object configura-
tions) collected using 4 cameras. The ground truth bounding-boxes and segmentation masks are
obtained via background subtraction.
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Chapter 5

Visually-Grounded Library of Behaviors
for Generalizing Manipulation Across
Objects, Configurations and Views

5.1 Introduction

In Chapter 4, we have talked about how we can do model-based control by learning a general 3D
object dynamics model that is robust to camera viewpoints. However, learning these dynamics
models requires supervised training on ground truth 3D object trajectories, which are hard to
obtain in many real world scenarios. Can our agent learn to manipulate objects even without
explicitly modeling the low-level object dynamics? In this Chapter, we study how the visual
representations can be used in a model-free manipulation setup.

When robots make their way out from factories into peoples houses, they are expected to be
able to manipulate a diverse set of objects that might appear in a house. Such a goal is challenging
since it is hard to predict what a robot might encounter during execution. Possibly, the robot
would need to grasp previously unseen objects placed in arbitrary locations, and it might be
difficult to observe an object in its most familiar views due to obstacles that might block certain
viewpoints. In this paper, we explore how we can best incorporate visual information to learn
robot behaviors that generalize to novel objects, configurations and views.

Current policy learning research focuses on discovering new behaviors rather than trans-
ferring behaviours across diverse objects and camera views. Existing works in reinforcement
learning (RL) mostly considers the same objects at training and test time and uses state repre-
sentations that retain 3D object locations and velocities [31, 89] but abstract away object shape,
color or texture, which might provide critical information regarding what types of friction and
contact models to use. Although such a state abstraction makes the state-to-action mapping eas-
ier to learn, it does not allow the policy to adapt across different objects. Methods that do attempt
to generalize across objects learn a mapping from images-to-action [67], depth-to-action [74] or
pointcloud-to-action [82, 96]. They have been successful in object grasping [74, 91] and object
pushing from a fixed camera view [2, 67]. Nevertheless, these methods have shown to be hard
to generalize across different camera viewpoints [14] and objects. Works that attempt to transfer
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Figure 5.1: We propose a novel policy representation that generalizes to unseen objects and
camera views. In contrast to prevalent approaches that learn state-to-action or image-to-action
mappings, our proposed model decomposes a policy into a behavior selection module that uses
visual observations and a library of behaviors to select from that uses abstract state representa-
tions as inputs.

visuomotor policies learned in simulation to the real-world often require identical placement of
the camera in the real world [50, 89].

Lack of generalization in existing visuomotor approaches is attributed to: (a) lack of state
abstraction and (b) occlusions, foreshortening, and other artifacts caused by camera projection in
images. For a policy to generalize to a new object, it is often useful to find a state abstraction, a
minimal subset of environment features useful for performing a task [62]. Abstractions facilitate
transfer by explicitly ignoring parts of the environment that are irrelevant to a particular skill.
For example, when opening a bottle, the size of the cap is a relevant feature, but the color of
the bottle itself is irrelevant. Policies that attempt to learn what features matter automatically
often require large amounts of training examples. Aside from a lack of state abstraction, existing
visuomotor policies are sensitive to changes in the pixel values in the image space. Appearance
and location of the object and the gripper and their relative arrangement, which are constant in
3D, varies with the viewpoint in 2D images, which causes these policies to fail under camera
viewpoint changes. Changing the inputs to 3D point clouds can potentially reduce the effect
from projection artifacts, yet the quality and completeness of the point cloud still depends on the
number of available views and the viewing angles.

To improve generalization, we propose Visually-grounded library of BEhaviors (V-BEs), a
policy representation that learns to perform manipulation tasks with varying objects, initial and
goal configurations, and under varying camera viewpoints. In place of prevalent approaches
of learning a flat image-to-action or object-to-action mapping (see Figure 5.1(a)(b)) which op-
erates on a single representation, our model learns to disentangle and operate on two separate
representations in a hierarchical setup (see Figure 5.1(c)). At the higher level of the hierarchy,
a selector selects an appropriate behavior to execute among a library of given behaviors, part
of the lower level of the hierarchy. This selector learns a 3D object feature representation that
captures the static object properties, such as object shape and affordances, via a combination of
self-supervised view-prediction and object interaction prediction. The former makes the repre-
sentation robust to changing camera views and occlusions by learning to complete the missing
information from current views, while the latter helps the representation encode affordance in-
formation (i.e., how objects change by applying a behavior). At the lower level of the hierarchy,
there are a library of distinct behaviors, each of which uses an abstracted state representation that
captures dynamic properties of entities in the environment such as object and gripper positions
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at the current time step. Different behaviors can be redundant, use different state representations,
and be learned or manually engineered with different algorithms [3, 25, 71].

We test the proposed model in grasping and pushing a large pool of diverse objects. We
show it can generalize to unseen objects at test time with varying object starting positions, initial
poses, goal locations, and camera views and outperforms existing single-policy image-to-action
mapping [67] or object-to-action mapping that uses only the fast changing 3D object locations
[89]. We further show our model trained in simulator can be directly transferred to a real robotic
platform, and can significantly improve its performance by fine-tuning only on a handful of
interaction labels. In the real robot setup, the robot can use camera views that are totally different
from those used at training time in the simulator and still get good task performance.

5.2 Method
Our policy Π is a visually-grounded library of behaviors, as shown in Figure 5.2. V-BEs are
comprised of multiple behaviors {πi | i = 1, 2, . . . , K} and a behavior selector G. Each behav-
ior πi is either an open loop trajectory generator, or a closed-loop policy (feedback controller)
that tracks objects over time. Since most behaviors are developed using abstract state represen-
tations, namely, 3D object locations and 3D poses and do not take into account object shape or
appearance, each of them can handle only a subset of objects and their 3D orientations. To be
able to handle a diverse range of objects, we need to decide which behavior to use under which
circumstance. To achieve this, we propose a behavior selector which is a gating network that,
given the sensory observations øt, predicts the behavior that can best manipulate the object under
consideration to its desired configuration. Our sensory input to action mapping then, at each
time-step reads:

Π(at|ot, g) =
K∑
i=1

G(ot)iπi(at|ot, g), (5.1)

where g is the goal configuration to achieve, ot = {Ivt ,vt} is the sensory observation in the form
of one or more RGB-D images Iv ∈ RĤ×Ŵ×4 captured from arbitrary but known camera poses
v ∈ R7, and G(ot)i ∈ {0, 1} denotes the selector’s output for πi at time step t.

Our main contribution is the factorization of the visual properties of the object presented in
the sensory observation ot, so that, the behaviors {πi | i = 1, 2, . . . , K} and the selectorG operate
on separate object visual properties. The behaviors use as input dynamic visual properties that
change throughout the manipulation episode, such as object or part 3D positions, and abstract
away object appearance information. Let fπi(ot) denote the state abstraction behavior i uses.
In contrast, the selector G takes as input the static object visual properties. It takes the raw
sensory observation ot and transforms it into a location invariant visual representation of the
object fG(ot), which captures object appearance and 3D size, which remain constant throughout
the manipulation. With such a distinction on the representation used by the two modules, we can
rewrite Equation equation 5.1 into:

Π(at|ot, g) =
K∑
i=1

G(fG(ot))iπi(at|fπi(ot), g). (5.2)
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One advantage of having this decomposition is that each behavior πi can then use its own state
abstraction fπi(ot), such as object 6D-poses, axis-aligned bounding boxes (as used in this paper),
part-based 3D boxes, or object keypoints locations [97]. This framework supports integrating a
wide range of existing models, representations, and behaviors as selectable behaviors. This
architecture is also recursive, in that any behavior can consist of the same architecture replicated
at a lower level. We consider here single object manipulation skills but our formulation can
generalize to multiple objects.
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Figure 5.2: Overview of the proposed framework. Our model consists of (a) a behavior selector
G that learns to map RGB-D images I to an affordance-aware, view-invariant 3D feature space
that reflects how objects change by applying a behavior, and (b) a library of behaviors, where
each behavior πi can either be a controller or a policy learned via RL.

In the rest of this section, we first explain the architecture and training details of the behavior
selector in section 5.2.1, and then explain how we acquire a library of behaviors for the two robot
manipulation tasks we evaluate our framework on in section 5.2.2.

5.2.1 Visually-Grounded Behavior Selector

The behavior selector G is a nearest neighbor classifier that uses the visual feature representa-
tion of the object to manipulate fG(ot) as a query to retrieve the behavior that has the highest
propabability to manipulate the object successfully. Each behavior πi is associated with a learned
retrieval key κi.
View-invariant Feature Learning Self-supervised by View prediction: The behaviour selec-
tor should ideally be viewpoint invariant as behaviors should not depend on camera placement
in the environment in most cases. To achieve this, we design the selector G to operate on a 3D
viewpoint-invariant object-centric feature representation fG(ot) = Mo ∈ M = RH×W×D×C ,
which is a set of 3-dimensional feature maps centered around the object of interest. The retrieval
key κ ∈ M is also learned in the same representation space. Both Mo and κ are with the size of
64× 64× 64× 32 in the experiments. We build upon recent advances in 3D perception and use
geometry-aware networks (GRNNs) [135] to map a single RGB-D image or a set of multi-view
images to a complete 3D feature representation of the scene the image(s) depict. GRNNs learn to
complete the missing information from a single view by optimizing end-to-end for view predic-
tion using multi-view data collected by the robot [135]: an input RGB-D image is un-projected
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into an (incomplete) 3D feature grid, missing information is “inpainted” via a series of 3D con-
volutions, and the completed 3D feature grid is projected to a novel viewpoint and decoded to
the corresponding RGB-D image. The view prediction loss reads:

Lview-pred(φ) =
N∑
n=1

‖Pφ(GRNNφ(Invn ,vn), q)− Inq ‖2, (5.3)

where GRNN(Iv,v) is a function that lifts RGB-D input images Iv capturing from camera poses
v to a geometry-consistent 3D feature map M = RW̄×H̄×D̄×C̄ with W̄ , H̄, D̄ denoting the spatial
dimension and C̄ denotes the feature dimension of the 3D feature map, P (M, q) is a projection
function that projects the 3D feature map from a query viewpoint q and decodes to a target image,
Inq is the target image to predict, and φ is the neural network weights of GRNN. From the scene
map M, we obtain object-centric feature representation Mo by cropping the scene map using a
fixed-size axis-aligned box, centered around the object we wish to manipulate.

Our selector G, given a 3D object feature representation Mo of the object to be manipu-
lated and a retrieval key κi for behavior πi, computes the probability Ĝi that πi can successfully
manipulate the object to its desired goal location:

Ĝ(Mo)i = σ(〈Mo, κi〉) ∈ [0, 1], (5.4)

where 〈·, ·〉 is the inner product operation and σ is the sigmoid function. It then selects the
behavior with the highest predicted probability:

G(fG(ot))i = G(Mo)i = 1{i = argmaxi′Ĝ(Mo)i′}. (5.5)

Affordance-aware Feature Learning Self-supervised by Interaction: The 3D feature repre-
sentations obtained through view prediction capture how objects look, but not how they can be
manipulated. Our selector should operate over representations that capture information about
how an object can be used, and how it will react to an agent’s actions. We will use the term
affordance, coined by Gibson in 1966 [30], to denote this information.

We learn affordance-aware 3D feature representations by applying behaviors in the library
to the objects in the training set, and update the object representations and the retrieval keys
κi, i = 1 · · ·K for behaviors πi, i = 1 · · ·K according to the success rate a behavior achieves
on a particular training object, as shown in Figure 5.2. Let uij ∈ [0, 1] be the success rate after
Nattempt trials of behavior πi on object ωj , under potentially varying goals g. Here, we treat same
objects with different initial orientation as different objects since we assume that canonical poses
of objects are not given. Each trial encounters the same object in a potentially different initial
location, orientation and desired goal location. Our loss then reads:

Laffordance(κ1 · · ·κK , φ) =

K∑
i=1

|Ωtrain|∑
j=1

Nattempt∑
n=1

BCE
(
1{uij ≥ δ}, 〈Rφ(Iωj

n ), κi〉
)
, (5.6)

where BCE(p, l) = −p · log(σ(l)) + (1− p) · log(1− σ(l)) is the standard binary cross entropy
loss, δ is a hyperparameter for thresholding the success rates, Iωj

n are the initial RGB-D images
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drawn from tasks with object ωj in the nth trial, R(I) is the 2D-to-3D visual feature extractor that
takes the cropped object-centric 3D feature representations from GRNNs, and φ is the GRNNs
weights. The final objective for training the affordance-based visual features is

minimize
κ,φ

L(κ, φ) = Lview-pred(φ) + λa · Laffordance(κ, φ), (5.7)

where λa is a hyperparameter for balancing the two losses.

5.2.2 Building a Library of Behaviors
The visually-grounded behavior selector selects plausible behaviors to manipulate a specific ob-
ject from a library of behaviors. But how can we obtain this library in the first place? Indeed,
any existing behaviors, whether engineered or learned using reinforcement learning or imitation
learning, can be included in our library. In this paper, we consider two common manipulation
tasks: pushing and grasping, and build appropriate behavioral libraries for each.

For pushing, the behaviors are deterministic goal conditioned policies at = π(st, g) that map
a state of the environment and the robot st = [set , s

r
t ] to an action at time step t. In our case,

the state of the environment is the 3D object centroid set = f(ot, O) and the robot state (gripper
3D location, pose, and whether it is opened or closed). The action includes 3D motion, opening
(position control), and closing (force control) of the gripper. We use a total of 25 goal conditioned
policies – one is trained from the whole set of objects, while the others are trained on disjoint
subsets of object configurations organized based on object category and initial poses. We train
all policies using deterministic policy gradients (DDPG) [99] with goal relabelling (HER) [3]
while randomizing initial and goal object 3D locations.

For grasping, we design controllers π(at|g; pgrasp, qgrasp) which given a 3D grasping point
pgrasp ∈ R3 relative to the center of the object and a grasping 3D angle qgrasp ∈ R2 , move the
gripper (open loop) to the grasping 3D point location, close it, and move it to the desired goal
location. The grasping angle qgrasp consists of two numbers describing the yaw of the gripper
and the elevation angles between the gripper and the table surface. When the elevation angle
is smaller than 90 degrees (not top-down grasps), we constraint the gripper to point toward the
center of the object on the x-y plane. We manually select 30 different controllers including top-
down grasps with different yaw orientations (top-grasps) and grasps from the side with different
elevation angles of the gripper (side-grasps). We empirically found that these parameterized
controllers are quite stable and can be shared across multiple objects.

5.3 Experiments
Our experiments aim to answer the following questions: (1) Does the proposed library-based
approach outperform existing methods that use a single combined perception and policy module,
either using 2D images, 3D object locations, or 3D scene feature maps as input? (2) Is the
proposed view-invariant and affordance-aware 3D feature representation a necessary choice for
the selector? (3) How do V-BEs compare to state-of-the-art methods, specifically, in the grasping
domain? (4) Does the method work on a real robot? We test our model on grasping and pushing
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a wide variety of objects in the MuJoCo simulator [131] and further test the grasping module on
a real-world Franka Panda robot arm.

5.3.1 Simulation Experiment Setups

Our simulated environment consists of a Fetch Robot equipped with a parallel-jaw gripper. The
robot is positioned in front of a table of height 0.4m. To obtain the visual observations, on
each episode we choose 3 random cameras from cameras placed at 30 nominal different views
including 10 different azimuths ranging from 0◦ to 360◦ combined with 3 different elevation
angles from 20◦, 40◦, 60◦. All cameras are looking at the center of the table top, and are 0.5
meter away from that point. All images have size 128× 128.
Task Descriptions: In the grasping task, the agent has to grasp an object and move it to a
specified target location above the table. We use 274 distinct object meshes from 6 categories in
ShapeNet [9] including toy buses, toy cars, cans, bowls, plates, and bottles. We randomly split
the dataset into 207 training objects, and 67 testing objects. After augmenting the meshes with
random scaling from 0.8 to 1.5 and random rotations around the vertical z-axis, we get a total of
800 distinct object configurations (object instance and pose), 600 for training and 200 for testing.
At the start of each episode, an object is placed in an area of 30cm× 16cm around the center of
the table, and a goal is sampled uniformly 10 ∼ 30cm away from the gripper’s initial position.
An episode is successful if the object centroid is within 5cm of the target at the final timestep.

In the pushing task, the agent has to push an object placed on the table to a specified target
location. We use 100 objects from 12 categories in ShapeNet [9]: baskets, bowls, bottles, toy
buses, cameras, cans, caps, toy cars, earphones, keyboards, knives, and mugs. After augmenta-
tion and splitting to train and test sets, we obtain 615 training object configurations and 200 for
testing. The initial and the goal position of the object are both uniformly sampled to be within
15cm of the center of the table along both x-axis and y-axis, although we resample if that loca-
tion is already in the goal area. An episode is successful if the object centroid is within 5cm of
the goal within 50 timesteps.
Baselines: We compare our method with various learning and non-learning based methods for
object manipulation:
(a) Single Behavior w/ Abstract 3D State (Abstract 3D) [3, 99]: a policy takes as input ground

truth 3D bounding box of the object and gripper and outputs actions.

(b) Single Behavior w/ Abstract 3D State and 2D Images (Abstract 3D + Image): a policy takes
both RGB-D images and the ground truth 3D bounding box as inputs and outputs actions.
Our architecture resembles that of [147], but we further include ground truth object position
as extra inputs to the model. For fair comparisons to other methods, the model only takes as
input the current state as opposed to the states in 5 past steps, as in [147].

(c) Single Behavior w/ 3D Feature Tensor (Contextual 3D): a policy that takes as an input RGB-
D images and the ground truth 3D bounding box and outputs actions. Different from (b), the
model first transforms the image into a view-invariant 3D feature tensor using GRNNs [135],
then converts the 3D feature tensor into a feature vector though three 3D-convolutional layers
and a fully connected layer, and finally concatenates it with the rest of the inputs to predict
actions.
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(d) Ours, Library of Behaviors w/ Visual Selector (V-BEs): Our model takes the same input as
(b) and (c). The 3D bounding boxes are used as input to all the behaviors. The RGB-D
images are transformed into 3D affordance-aware visual features and treated as input to the
selector.

We train the baselines with different learning methods including behavior cloning [67], DDPG-
HER [3, 71] and DAGGER [106]. We report the best performance we got by training the model
with these different methods. We also attempt to make all the models to have similar number of
parameters so the comparison is fair. However, larger networks are empirically harder to train
and do not converge well, so we instead increase the number of parameters in a smaller networks
until its performance saturates. For pushing, we found that using DDPG-HER is enough to lean
a good Abstract 3D policy from scratch. For abstract 3D + Image, we found it is critical to use
behavior cloning from expert demonstrations to obtain good policies. The expert demonstrations
are obtained from trained expert policies on single objects. We follow the architectural design and
training of [147] to learn the image-to-action mapping. For Contextual 3D, we include DAGGER
to enforce behavior cloning during execution. To train the grasping policies, we further include
human demonstrations in the replay buffer when training it with DDPG-HER. Both abstract
3D + Image and Contextual 3D are trained with DAGGER since offline behavior cloning is
insufficient.

5.3.2 Single Behavior versus a Library of Behaviors

We compare the proposed model with models that do not use a library-based approach, i.e., sin-
gle behavior approaches. As shown in Table 5.1, our method outperforms all the single behavior
baselines. Abstract 3D performs well, but since it does not use any visual information, its per-
formance saturates at around 0.8 for pushing and 0.3 for grasping. Abstract 3D performs poorly
for grasping. The learned behaviors do not transfer well to new objects. Adding a 2D image
helps, but not dramatically (see Abstract 3D + Image in Table 5.1). Although 3D feature maps
obtained from GRNNs are semantically rich and can handle varying viewpoints, the mapping
to actions is harder to learn due to the higher dimensionality of the 3D scene map, resulting in
under-fitting models. Our model takes advantage of both abstract and semantically rich represen-
tation and thus can handle better object variability and transferability. The combinatorial nature
of the proposed method allows the model to capture the multi-modality in trajectory generation.

Single Behavior library of behaviors
Abstract 3D Abstract 3D Contextual 3D V-BEs

[3, 99] + Image (Ours)
grasping 0.30 0.35 0.20 0.78
pushing 0.83 0.70 0.10 0.88

Table 5.1: Success rates on grasping and pushing unseen objects.
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5.3.3 The necessity of building the selector with the proposed view-invariant
and affordance-aware 3D Representations

Next, we show the importance of using view-invariant 3D visual feature representations and the
importance of self-supervised training with interaction labels. We compare our method with two
baselines: (a) a model with a selector that operates over 3D visual feature representation learned
only with the view and occupancy prediction loss, as suggested in [34, 135], without fine tuning
with interaction labels, and (b) learning the visual affordance features using 2D visual features
extracted from 2D CNNs. Our method significantly outperforms these two baselines, which
shows the importance of fine-tuning on the execution labels as well as the use of 3D feature
representations for behaviour selection.

2D Features Proposed Method Proposed Method w/o Fine-tuning
(3D Features) on Interatcion Labels [135]

Grasping 0.46 0.78 0.31
Pushing 0.81 0.88 0.46

Table 5.2: Success rates on grasping and pushing unseen objects using selector with varying
representations.

Visualizing Behavior Clusters To understand the learned affordance-aware visual feature rep-
resentations, we cluster the testing objects in the pushing task based on which behavior is selected
to be executed when the selector is presented by an object. We present a sample of behaviors
and the corresponding object clusters in Figure 5.3. As seen in the visualization, the learned
feature representation in the affordance-aware behavior selector represents objects that are close
in affordance in neighboring regions of the feature space. It is also robust to variations of object
colors, sizes, and semantic categories. For example, the behavior trained on knives (last row in
the figure) is predicted to be able to handle both very thin keyboards and knives; the behavior
trained on bottles (fourth row in the figure) is predicted to be able to handle both bottles and
small cans.

5.3.4 Comparison with other grasping baselines
We further compare the proposed model with current state-of-art methods in grasping: (a) DexNet
[74]: a state-of-the-art top-grasps method which, given a top-down depth map, generates grasps
as the planar position, angle, and depth of a gripper relative to an RGB-D sensor. (b) 6-DOF
Grasp-Net (GraspNet) [82]: a state-of-the-art grasping method that describes the grasp as a
full 6-degrees-of-freedom (DoF) pose. For (a)(b), we use the publicly released code and model
provided by the authors, finetune it with interactions in our training environments, and evaluate
it in our test environments. (c) Our Model with Only Top-grasps: an ablated baseline using
the proposed methods and include only the top-grasps. (d) Our Model with object detector:
our model performs with estimated object bounding box. To remove the effect of the detector,
all other baselines use ground truth object locations to obtain the corresponding depth images or
object locations.
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Behavior trained on knives rotated 0°

Behavior trained on cans rotated 0°

Behavior trained on bottles

Behavior trained on keyboards rotated 90°

Behavior trained on baskets

Behavior trained on cameras

Figure 5.3: Visualization of a sample of behaviors and their corresponding object clusters. In
each section of the figure, the behavior described after the arrow is the output of the affordance-
aware behavior selector when it takes any of the objects visualized in the section as input.

As shown in Table 5.3, our method outperforms all baselines by a large margin, even with
an estimated object bounding box. Dexnet performs the best among the baselines, but it can
only handle depth maps from a top-down view while all other methods can use any camera view.
GraspNet, to our surprise, performs poorly, especially when we randomize object initial and goal
locations. Many grasps proposed by GraspNet often turn out to be unstable when the object is
placed close or far away from the robot. Our model handles variances in object locations well
because we include in the behavior library general top-down, left-hand, and right-hand grasping
behaviors that are more stable across object locations. Our approach outperforms these methods
by a large margin even only using very naive controllers in the behavior library.

DexNet GraspNet V-BEs w/ V-BEs V-BEs w/
[74] [82] Top-Grasps (Ours) detector
0.72 0.36 0.67 0.78 0.73

Table 5.3: Success rates on grasping for unseen objects.
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Figure 5.4: Real robot setup (left) and objects used (right).

5.3.5 Real robot results
To demonstrate that our V-BEs representation works in a real robot setup, we measure the per-
formance of our model on a real 7-DOF Franka robot arm equipped with a parallel-jaw gripper
for the grasping task (see Figure 5.4). We set up 4 realsense RGB-D cameras that have full
view of the workspace around the the center of the table. In each trial, an object is placed in a
20cm × 10cm region on the table, and a goal is sampled uniformly away from the objects start
position from−20cm to 20cm in all x, y, and z dimensions. An episode is considered successful
if the object centroid is within 5cm of the goal position.

We use the same set of grasping behaviors as in our simulated experiments. We randomly
select 3 views from 4 possible camera views to obtain RGB-D images as inputs to the learned
selector. We randomly split 56 objects including computer-mouses, bananas, bowls, mugs and
wooden bricks (see Figure 5.4) into a training set and a test set, each with 28 objects. Without
further fine-tuning, our model trained in simulated environments achieves success rate of 46.4%
on the test set, even though the camera views and objects are unseen at training time. To improve
model performance in the real world setup, we collect interaction labels by running the grasping
behaviors on the training objects and use the labels to finetune the visual selector with the objec-
tive specified in Equation equation 5.7. After fine-tuning, our model can achieve success rate of
82.1% on the test set. Qualitative results are shown in Figure 5.5.
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t t + 1

Figure 5.5: Grasping Results on a real robot. The robot can successfully pick up different
objects and transfer it to a target location in the air.
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Part III

Concept learning: Learning to construct
memory and associate current observations

with past memory
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Chapter 6

Unsupervised learning of 3D visual
Concepts by Corresponding and
Quantizing Detected Objects

6.1 Introduction
The goal of this chapter is to explore how the unsupervisedly learned 3D feature representations
can be used for recognizing unseen objects and infer the objects’ 3D poses in 2D images. The
ability to recognize objects under varying poses, sizes, lighting conditions, and camera view-
points is fundamental for humans and animals to track and interact with diverse objects.

While humans and animals acquire this ability through evolution and interacting with the
world under a moving visual sensor—their eyes—, most existing computer vision models still
rely on supervised training on massive labelled images to learn to recognize objects and their
poses [39, 132]. In robotics, most works assume a closed world of predefined 3D object models,
e.g., 3D object meshes, and do not handle objects that cannot be explained by a 3D model [85].
Some works propose to learn a mapping from the images to the parameters of the 3D models,
but these models usually need the 3D models of the objects in the first place, to generate a large
synthetic dataset with 3D poses and category annotations for learning the mapping [75, 122, 125].
Few-shot object detection methods [60, 118, 138] use a support sample to quickly classify a
query sample, but remain in 2D image space and do not infer 3D object orientation, rather object
label. Recognizing familiar objects and detecting their 3D locations, poses and scales in images
without 3D annotations remains elusive.

Our key intuition in this work is to represent objects in terms of 3D feature representations
inferred from the input RGBD images, and infer alignment between two objects by explicitly
rotating and scaling their representations during matching. While current state-of-the-art (SOTA)
models for object detection and pose estimation represent an object as a feature vector or 2D
feature maps [39, 78, 98], our model represents objects as a 3D feature representation inferred
from 2.5D (RGBD) input images, which can be explicitly scaled, rotated and compared in 3D.
Different from methods in robotics research that infer explicit 3D geometry of an object in terms

0This chapter is based on the paper published previously on CVPR 2020 MVM workshop [93].
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Figure 6.1: Top: Model overview. Our model takes as input RGB-D images of scenes, and
outputs 3D prototypes of the objects. Bottom: Evaluation tasks. (a) Scene parsing: Given a new
scene, we match each detected object against the prototypes using a rotation-aware check to infer
its identity and pose. (b) Image generation: We visualize prototypes with a pre-trained 3D-to-2D
image renderer. (c) Few shot object labelling: Assigning a label to a prototype automatically
transfers this label to its assigned instances.

of meshes or poinclouds from multi-view data [85, 92, 129] and depend heavily on a sufficient
number of views, our model learns to infer the 3D object feature representation from a single
view upon self-training.

We propose 3D quantized-Networks (3DQ-Nets), a model that can detect objects in 3D and
that can iteratively establish accurate object correspondences without human labels or 3D anno-
tations. 3DQ-Net first maps 2.5D images to 3D feature maps using Geometry-Aware Recurrent
Networks (GRNNs) introduced in Chapter 2. We initialize its feature representations by pre-
training on self-supervised view prediction task introduced in section 2.2.1.Since the inferred 3D
visual feature map is view-invariant, an object can obtain the same representation when inferred
from images captured under different camera distances and angles. 3DQ-Nets further improve
the features through automated cross-scene correspondence mining. The step is critical for es-
tablishing more accurate correspondence between objects. 3DQ-Nets then cluster objects in a
pose-aware manner into several clusters of similar-looking objects. We call the learned cluster
centers prototypes, since they correspond to aggregates of object instances across 3D poses and
scales. Given a scene, our model learns to parse the scene in terms of objects associated to pro-
totype identities and their corresponding 3D poses (see Figure 6.1 (a)). The learned prototypes
can be explicitly rotated, and can be rendered into images through a learned neural decoder (see
Figure 6.1 (b)). We demonstrate the usefulness of our framework in few-shot learning: our model

60



can recognize and name objects from one or a few samples (see Figure 6.1 (c)). Once given a
labelled instance, the model propagates the label to all the instances in the same cluster.

Whether the model can infer correct correspondence from the object-centric 3D feature rep-
resentation depends on the quality of two key components: the learned visual features and the
3D object detector. 3DQ-Nets aim to iteratively optimize these two components. The weights of
the encoder, decoder, 3D object detector, and prototypes are optimized using a mix of end-to-end
backpropagation and expectation-maximization (EM) steps, and we show 3D object detection
and prototype learning improve over time and help one another.

We empirically show that individual modules of our model benefit one another and are es-
sential for learning to recognize objects and their 3D orientation without supervision: the 3D
object detector benefits from 3D visual prototypes by discarding bounding boxes not matching
to prototypes; learning better object detection results in more accurate inference of finding ob-
ject correspondences; better inferred object correspondences result in better learning of visual
feature representations; and better visual feature improves clustering by inferring accurate pose-
equivariant alignment of objects to prototypes.

We test our model in diverse environments including photo-realistic simulators and real world
videos captured by a Kinect camera. We empirically show our model can effective learn to name
new objects in a few-shot setting by propagating provided labels through the learned clusters.
Our model outperforms by a large margin numerous baselines that do not infer a 3D feature
space, rather, detect and cluster objects in a 2D feature space using CNN feature representations
pretrained on ImageNet and finetuned with the few supplied labels, or do not mine cross-scene
correspondences. We ablate each module of the proposed model and quantify its contribution in
the performance of our full model.

The main contribution of this work is matching objects in a 3D-aware representation space
inferred from images without any 3D annotations. The proposed model learns the representa-
tions by unsupervised view prediction and automated correspondence mining. With the learned
representations, objects are clustered into 3D prototypes which form then the basis for recog-
nition: prototype identity inference and 3D pose with respect to the prototype’s orientation. To
the best of our knowledge, this is the first system that demonstrates that pose-aware 3D object
recognition emerges without any 3D annotations in RGB-D images.

6.2 3D Quantized-Networks (3DQ-Nets)
We depict the architecture of our model in Fig. 6.2. Given a set of RGB-D images of a static
scene and the corresponding camera poses for capturing these images, our model constructs a
3D scene feature representation using geometry-aware recurrent networks (GRNNs) introduced
in Chapter 2 . Our model detects objects in the inferred 3D scene representation (see Section
2.2.2 for details about the object detector) and matches the 3D object feature tensors against a set
of 3D prototypes by searching over 3D rotations (Section 6.2.1). Concurrently, our model uses
the detected 3D boxes to improve the 3D visual feature representation by iteratively inferring
3D part correspondences across objects detected in different scenes, and using metric learning to
supervise the feature representation to reinforce the inferred correspondences (Section 6.2.2).

Our model iteratively optimizes over weights of the encoder, decoder, 3D detector module
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and prototypes, and uses individual modules to bootstrap the learning of the others. We pretrain
the weights of the encoder and decoder of GRNNs by view prediction. We detail each module in
their respective section and present the learning of the model in Section 6.2.3.

Figure 6.2: Architecture for 3D Quantized-Networks (3DQ-Nets). Given multi-view RGB-D
images of scenes as input during training, our model learns to map a single RGB-D image to
a completed scene 3D feature map at test time, by training for view prediction (b). The model
additionally uses cross-scene and cross-object 3D correspondence mining and metric learning, to
make the features more discriminative (c). Finally, using these learned features, our model quan-
tizes object instances into a set of pose-canonical 3D prototypes using rotation-aware matching
(d). These learned prototypes help improve our object detector by providing confident positive
3D object box labels (e) .

2.5D-to-3D mapping using Geometry-Aware Recurrent Networks (GRNNs) Our model
first use Geometry-aware Inverse Graphics Networks (GRNNs), introduced in Chapter 2 to “lift”
RGB-D images of static world scenes to 3D scene feature maps. We will denote the 3D feature
map inferred from an input RGB-D image I as M = GRNN(I) ∈ Rw×h×d×c, where w, h, d, c
denote the width, height, depth and number of channels, respectively. In this chapter, all our
experiments use (w, h, d, c) = (72, 72, 72, 32).

3D feature learning by predicting views We pre-train the encoder and decoder of GRNNs
by predicting views using our multiview RGB-D image set with groundtruth camera poses, as
introduced in Section 2.2.1. By training GRNNs to predict a query view given a single view
input, we enforces the model to complete the missing or occluded information from the image.
Different from the objective used in Section 2.2.1, we further include a occupancy prediction
loss. Specifically, to predict a novel view, the scene feature map M is oriented to a sampled
query viewpoint vq and decoded to an RGB image and occupancy grid, and then compared with
the ground truth RGB (Iq) and occupancy (Oq) respectively:

Lv =‖DecRGB(M, vq)− Iq‖1 + log(1 + exp(−Oq ·Decocc(M, vq))), (6.1)

The RGB output is trained with a regression loss, and the occupancy is trained with a logistic
classification loss. Occupancy labels are computed through raycasting.
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3D object detection A 3D detector operates on the output of the geometric encoder GRNN
and predicts a variable number of object boxes with associated confidences: O = Det(M) ∈
{(b̂oloc, co)|b̂oloc ∈ R6, co ∈ [0, 1]}. See Section 2.2.2 for details of the object detector. We provide
our detector with a “warm start” by pre-training it with 3D box annotations computed from trian-
gulated 2D category-agnostic proposals from a publicly-available 2D objectness detector [142].
A detector trained with noisy annotations obtained from triangulation is expected to perform
poorly, but it is sufficient for our system to start learning something useful. In Sec. 6.2.3 we
describe how our model can self-training the detector for it to gradually learn and outperform its
initialization.

6.2.1 Quantizing objects into prototypes
Our model learns a set of 3-dimensional prototypes ek ∈ Rwp×hp×dp×c, k ∈ K = {1, . . . , K}
by clustering object-centric 3D feature maps. Each prototype represents a set of similar objects.
The prototype serves as the cluster center of the set. To learn them, our model clusters objects in
the scene in a pose-equivariant and scale-equivariant manner: similar object instances that vary
in scale and pose are mapped to the same prototype. We crop the 3D scene feature map M given
a detected box to obtain object 3D feature tensors, and resize it to match the common size of
the 3D prototypes Mo = resize(crop(M, bo), [wp, hp, dp]). Our experiments use (wp, hp, dp) =
(16, 16, 16). We match detected objects’ 3D feature tensors to prototypes using a rotation-aware
feature matching. Specifically, we exhaustively search across rotations R, in a parallel manner,
considering increments of 10◦ along the vertical axis:

(zoid, z
o
R) = arg min

k∈K,R∈R
‖ek − Rot (Mo,R) ‖2, ∀o ∈ O, (6.2)

where Rot (M,R) explicitly rotates the content in feature map M with angle R through trilin-
ear interpolation. Having assigned objects to oriented prototypes, we update our prototypes to
minimize their Euclidean distance to the assigned oriented and scaled object tensors:

L3DQ(e) =

|O|∑
o=1

‖ezoid − Rot(Mo, zoR)‖2 (6.3)

We initialize our prototype dictionary with a set of exemplars. To ensure prototype diversity at
this initial stage, we build the dictionary incrementally, and only use an exemplar as a prototype if
its feature distance to the already-initialized prototypes is higher than a threshold. Equations 6.2
and 6.3 can be seen as expectation maximization steps iterating between exemplars-to-prototypes
assignment and prototype updates.

Implementation details Each object prototype is a 3D feature tensor of size 16×16×16×32.
We initialize these prototypes incrementally and assign an exemplar as a prototype only if its
feature distance to the already-initialized prototypes is lower than a cosine distance of 0.8. This
ensures diversity of prototypes during initialization. While associating exemplars to a prototype,
we check over 36 different rotations along the vertical axis at 10◦ increments. We keep our
prototype dictionary size K as 50 for all the datasets. Empirically from Figure 3(a)(main paper)
we have found that, K should be large enough to cover the object variability in the dataset.
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Figure 6.3: Cross-scene 3D correspondence mining. (a) We show that our approach relies on
part-level correspondences obtained by matching the features of the query region (in pink) to a
pool of object-centric 3D features maps. (b) These part-level correspondences are verified based
on how well their surrounding voxels match with one another in a spatially consistent manner.
(c) Finally we train our 2.5D-to-3D lifting module by doing metric learning using the verified
positive regions and randomly sampled negatives.

6.2.2 Cross-scene 3D correspondence mining

Whether the model can establish the correct correspondence between objects and learn meaning-
ful clusters relies on the quality of the visual features. To improve the visual features our model
exploits visual similarity not only within scenes, but also across scenes. While the view pre-
diction objective of Eq. 6.1 exploits different views of the same scene to learn the features, our
model further exploits part-based correspondence between objects in different scenes to further
improve the learned features. We adopt the correspondence mining method of ArtMiner [113]
to operate in 3D as opposed to 2D: Part based correspondences are hypothesized within detected
objects and are verified by voting of their surrounding context voxels. If the original match is
verified, hard-positive matches are then suggested in the surrounding of the match. Using the
mined hard positive matches and randomly sampled negatives, we finetune the weights of our
encoder GRNN using metric learning. We empirically found that training with such cross-scene
part-based correspondences helps improve the features.

Implementation details We randomly select 2000 object instances from our training data to
create two pools (Query Pool & Target Pool) of size 1000 each. Each pool maintains object-
centric 3D features of spatial size 16 × 16 × 16 extracted from the 3D feature map using the
detected boxes. As shown in Figure 6.3, for each training iteration, we randomly select a 2×2×2
patch on an object sampled from the Query Pool, and by doing exhaustive search (across 36
different orientations along the vertical axis) and verification in the target pool object features we
mine positive patches for metric learning training.

Searching over all the possible patches (we extract 4 patches from each object) for all 1000
objects in the target pool with all the 36 poses is computationally heavy. To reduce computation,
we first complete a rough search at the object-level to retrieve objects which are similar to the
query object, then we do fine-grained search at the part-level by searching over possible patches
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from these objects of interest. We do this by ranking objects based on their cosine distance (we
take the maximum cosine distance across 36 rotations) with the query object, and take only the
top 30 objects to perform fine-grained search on the patch-level.

For each target object, we extract 4 patches to compare with the query patch. For each
patch, we conduct a spatial consistency check similar to the work of [113]: instead of computing
inner product between the patches, we compare the surrounding patches of these patches. We
take the patches 6 unit Manhattan distance away from the patch center and compute an inner
product on these surrounding patches. The summation of the inner product between all the
surrounding patches serve as the final matching score for center patches. We take the top 200
patch retrievals based on the score, and take the 8 corners from their surroundings as positives.
We create negatives by randomly selecting a pair of patches from the pool. However, training
with naively sampled negatives on the fly is unstable. Following the suggestion from the work
of [40], we maintain a dictionary of size 100,000 for the negatives examples, and do momentum
update on our 2.5D-to-3D lifting module.

6.2.3 Iterative learning of object detection, visual features, and clustering

Since the initialized object detector is sub-optimal due to the lack of groundtruth 3D boxes and
can affect the rest of the modules, it is critical that we have a mechanism to improve it over time.
To achieve this, we iterate our model over the following steps: (i) 3D object detection (Section
6.2). This generates a set of 3D object proposals. (ii) Cross-scene object part correspondence
mining and learning (Section 6.2.2). This updates the encoder weights GRNN using metric
learning on inferred cross-scene correspondence on the detected objects. (iii) Prototype update
(Section 6.2.1). This assigns detected object instances to prototypes and updates the prototypes
e by backpropagating the clustering loss in Eq. 6.3. (iv) Object detector update. We label 3D
object proposals as positives or negatives using a combination of 3D center-surround saliency
score and matching to prototypes score. After the object detector is updated, we can iterate from
step one to improve the rest of the modules.

Specifically, we keep the 3D object proposals that have a good matching score against the
learned prototypes and discard the 3D object proposals whose 3D center-surround feature match
score is below a threshold. The intuition is trust detection that either detects something that
occurs often or has high saliency score. Center-surround saliency heuristic is used by numerous
works for 2D and 3D object detection [54, 59]. We then train the 3D object detector module
to emulate such labels through standard gradient descent. In Fig. 6.4-(a), we visualize the self
annotations and improvement made by our self-improving detector over 4 iterations.

Inplementation details. For every cropped object tensor, we calculate the cosine distance
which is maximum amongst all the prototypes in the dictionary. If this calculated distance for
a proposal is greater than 0.8 then we keep it as a valid proposal. We find the invalid proposals
using 3D center-surround saliency. Specifically, we calculate the average cosine-distance of the
cropped object tensor with its surrounding (top, down, left, right, front, behind) across all 3 axes.
If the average cosine-distance is above 0.65 then we consider that proposal as invalid. We use
the valid and invalid proposals as pseudo ground truths to further train the detector.
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Figure 6.4: Detection improvement over 4 iterations. The first row shows the input image
and the proposals of the object detector. The second row shows the annotations assigned to
the proposals using the 3D prototype distance and 3D center-surround score. We show that our
detector improves over time without any ground truth 3D proposals.

6.3 Experiments

We test our framework in a variety of simulated environments and real world scenes. In simula-
tion, RGB, depth and egomotion are provided by the simulator, whereas in the real world, RGB
and depth are provided by Kinect sensors and egomotion is computed using camera calibration.
Our experiments aim to answer the following questions:

1. Do 3DQ-Nets recognize objects better than CNN models pretrained on large labelled im-
age datasets?

2. How does the proposed pose-aware 3D clustering compare against 2.5D pose-aware clus-
tering, 3D pose-unaware clustering, or raw 3D point cloud registration?

3. Does cross-scene 3D correspondence mining improves features over view-predictive train-
ing, and how much?

4. In 3DQ-Nets, do feature learning, object clustering to prototypes, and 3D object detection
improve over training iterations?

We benchmark our model on three datasets: (i) CLEVR veggie dataset: we build upon the
CLEVR dataset [53] and add 17 vegetable object models bought from Turbosquid. (ii) CARLA
dataset: we created scenes using all 26 vehicle categories available in the CARLA simulator of
Dosovitskiy et al. [18] (iii) BigBIRD [114]: a publicly available dataset that contains multiview
shots for 125 different objects rotating on a table. We assign the objects to 41 different object
categories, combining similar objects into a single category.

We further qualitatively evaluate our model on two datasets: (iv) Replica [121] dataset: we
render images from the indoor meshes provided by Replica in AI Habitat simulator [110]. The
views are selected by moving the agent around randomly selected objects. (v) Real world desk
scenes dataset: training setup consists of 8 Kinect sensors surrounding the table to capture
multiview RGB-D data. During test time, we only use a single Kinect sensor.
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Datasets. ResNetRet ResNetClass 3DQ-Nets
CARLA 0.27 0.58 0.71
CLEVR 0.80 0.72 0.75

BigBIRD 0.40 0.67 0.82

Table 6.1: Few shot object category labelling accuracy

6.3.1 Few-shot object category labelling

In this experiment, we use ground-truth 3D bounding boxes during training of our model to
isolate errors caused by the 3D object detection module. Out task is to classify object-centric
image crops into object categories, when supplied with only two labelled object-image crop per
category. This means, that e.g., in the CARLA dataset, we use 52 labelled object image crops.
Note, the objects can be at any orientation. We evaluate the ability of our model and baselines to
retrieve objects of the same category when supplied with these few labelled examples.

Given an annotated instance, our model finds the prototype that has minimum rotation-aware
feature distance to the object instance, and it propagates the label to all the instances that are
assigned to the same prototype. If a prototype is matched with more than one label, then the
label which has matched the most is assigned to the prototype. Note that the small labelled set is
not used to update our features or prototypes. In Table 7.1, we compare 3DQ-Nets against two 2D
baseline models using pretrained ResNet-18 on ImageNet as their backbone: (i) Finetuning the
top layer of ResNet-18 with our training examples (ResNetClass), (ii) using the top average pool
layer activations of ResNet-18 to retrieve and copy the label of the nearest neighbor instance
from the training examples (ResNetRet), i.e., not finetuning at all the weights. We show the
results in Table 7.1. Our model outperforms both ResNetClass and ResNetRet. Despite the fact
the ResNet features are pre-trained on a large set of annotated images, our model can self-adapt
in the new domain of each dataset, and thus learn more meaningful object distances, captured in
the inferred 3D feature representations. On CLEVR-veggie dataset, ResNetRet performs slightly
better than 3DQ-Nets. We suspect this is because the object categories in CLEVR-veggie appear
in ImageNet, so the ImageNet pertaining likely provides discriminative features for these objects.

6.3.2 Clustering with 3D pose-aware quantization

In this experiment, we evaluate the importance of 3D pose-aware quantization for 3D object
clustering. We compare our model against three baselines: (i) 2.5DQ-Nets, a 2D CNN model
that takes concatenated RGB and depth as input and quantizes detected 2D image patches into a
discrete set of 2D prototypes by optimizing an autoencoding objective. During quantization, the
model conducts 2D rotation search. (ii) no-rot-3DQ-Nets, a model similar to ours except that it
assigns instances to 3D prototypes without rotation search. (iii) Pointcloud registration [81], a
method that uses registered point clouds as prototypes and conducts 3D rotation aware search to
infer the identity of the closest 3D poincloud prototype and the 3D pose of the object instance
with respect to the prototype. For our model and baselines we consider ground-truth 3D and 2D
object boxes to isolate the error from different detectors.

To evaluate the unsupervised classification accuracy using prototypes, we use LIN-MATCH,
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a bipartite graph matching method [63], that finds the permutation of prototype indices that
minimizes the classification error. We show these comparisons with varying length of the pro-
totype dictionary in Figure 6.5 (a). We see in Figure 6.5 (a) that models that use 3D representa-
tion achieve significantly higher accuracy compared to models using 2D representation. Further
adding rotation search in 3D during clustering improves the performance since the operation en-
forces objects with similar appearance but with different poses to be clustered together. We also
show that being able to inpaint objects from a single view during inference helps our model in
outperforming the Pointcloud registration baseline that needs to handle incomplete input object-
centric poinclouds. In Figure 6.5 (b) we show the scene reconstruction results of our models and
the neural baselines after replacing the object in the scene with its best matched prototype under
the inferred pose and rendering the 3D feature map through the learned decoder. We further
include the unsupervised classification accuracy when testing on the the CLEVR and BigBIRD
datasets in Table 6.2. For this experiment we set the number of prototyes (K) as 50.

(a)

GT

No-rot- 
3DQ- 
Nets

3DQ- 
Nets

(b)

GT 2.5DQ-Nets No-rot- 
3DQ-Nets

3DQ-Nets

GT 2.5DQ-Nets No-rot- 
3DQ-Nets

3DQ-Nets

GT 2.5DQ-Nets No-rot- 
3DQ-Nets

3DQ-Nets

GT 2.5DQ-Nets No-rot- 
3DQ-Nets

3DQ-Nets

2.5DQ- 
Nets

Figure 6.5: (a) Unsupervised classification
accuracy with varying length of prototype dic-
tionary in CARLA. (b) Scene reconstruction
results using the learned prototypes from our
model and the baselines.

Datasets. 2.5DQ-
Nets

no-rot-
3DQ-Nets

Pointcloud
registration

3DQ-
Nets

CLEVR 0.23 0.73 0.51 0.77
BigBIRD 0.28 0.81 0.57 0.83

Table 6.2: Unsupervised classification accu-
racy with dictionary size of 50 prototypes on
CLEVR and BigBIRD datasets.

6.3.3 3D feature learning with 3D correspondence mining

In this experiment, we evaluate the contribution of 3D mining in feature learning, by evaluating
the features in object category few shot retrieval. We compare it against the following feature
learning methods: (i) Resnet-18 pretrained on Imagenet dataset (ResNet), where we average-pool
features within the projected (ground-truth) 2D object boxes to represent the objects. (ii) GRNNs
trained with RGB view and occupancy prediction (rgb-occ) of [135]. (iii) GRNNs trained with
object-centric view contrastive prediction (rgbocc+VC) of [33]. (iv) We improve (iii) by using
the same metric learning loss function [40] as our model (rgbocc+VC*). (v) GRNNs trained
additionally with cross-scene 3D mining (ours). For (ii),(iii),(iv),(v), we use the cropped 3D fea-
ture maps from 3D object boxes to represent the objects. We randomly sample 1000 objects and
retrieve their nearest neighbors by considering the maximum inner product across 36 rotations
against a pool of another 1000 objects. For (i), we consider 2D rotation search as opposed to 3D.
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Datasets ResNet rgbocc rgbocc+VC rgbocc+VC* ours
CARLA 0.49 0.62 0.55 0.67 0.80
CLEVR 0.87 0.74 0.71 0.74 0.81

BigBIRD 0.47 0.44 0.69 0.77 0.73

Table 6.3: Retrieval results (precision@10 nearest neighbors) for different architectures and
objectives for 2D and 3D visual representation learning.

We show category-level retrieval precision within the first 10 retrieved nearest neighbors (i.e.,
precision@10) in Table 6.3.

As shown in Table 6.3, cross-scene correspondence mining improves the retrieval results. In
the CLEVR dataset, ResNet outperforms our model. Our model performs the best among the
unsupervised methods.

Object Level Retrieval. Figure 6.6 shows the qualitative results for object level retrieval. Here,
we compare the object retrieval results on object-centric (cropped and resized) 3D features maps
which are learned from the proposed method (rgbocc + 3D correspondence mining) and 2 other
baselines: rgbocc and rgbocc+vcdict, which are detailed in Section 4.3(main paper). We show
the results on 3 datasets: CARLA, BigBIRD, and CLEVR. For each query image, shown in the
first column, we show the top 5 retrievals for the three methods mentioned above. The green
box signifies that the retrieved image belongs to the same object category as the query, but is in a
different viewpoint of the same scene. Blue box depicts retrieval of the same object category from
a completely different scene. As can be seen, our method (rgbocc+3D mining) gives much more
accurate retrievals (more number of blue and green boxes) compared to the other two baselines
across all datasets. We show the object level retrieval results for this method on Replica dataset
in Figure 6.7.

Patch-Level Retrieval. Figure 6.8 shows the 3D object patch retrieval results using the learnt
3D features from the proposed cross-scene 3D correspondence mining technique. We visualize
the top 5 object part retrievals given a query object patch and a pool of target objects. For each
query image, we first unproject it in the 3D space, detect objects in the scene, and randomly se-
lect a 3D patch on one of the objects. The first column for each dataset represents the query and
the next 5 columns show the corresponding top 5 retrieved patches. For each query-prediction
row pair, the first row shows the input RGB images and the second row shows bird’s eye view
of the same RGB images unprojected in 3D space. The blue patches in the bird’s eye view vi-
sualizations (2nd row) show the 2D projection of the query/retrieved 3D patch. We additionally
show patch based retrieval results on Replica dataset in Figure 6.9. We show the top 5 retrieved
3D patches that best matched the corresponding query patch using verification from surround-
ing voxels technique described in Figure 6.3 (b). As can be seen, patch based retrievals seem
meaningful when surrounding context is given importance.

Rotation Matching. Finding the rotation transformation between two randomly posed RGB
images is a crucial step for our model. As mentioned in Section 3.2(main paper), to do pose-
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Figure 6.6: 3D object retrieval results obtained by retrieving image patch using features
learned from different feature learning methods, including rgbocc, rgbocc+vcdict, and rg-
bocc+3D correspondence mining (3DMine) methods. We visualize the retrieval results on
CARLA, BigBIRD, and CLEVR datasets. The green boxes indicate that the retrieved image
patches belongs to the same object instance as the query, but is in a different viewpoint. The blue
boxes indicate instances with the same ground truth object category labels.

Figure 6.7: 3D object retrieval results obtained by rgbocc+3D correspondence mining on
Replica dataset.
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Figure 6.8: Patch-Level retrieval results on CARLA, BigBIRD, and CLEVR datasets. For
each query-prediction row pair, the first row shows the input RGB images and the second row
shows bird’s eye view projection of the RGB-D point cloud. The blue patches in the bird’s eye
view visualizations (2nd row) show the 2D projection of the query/retrieved 3D patch.

Figure 6.9: Patch based 3D object retrieval results on Replica dataset.
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equivariant quantization, we need to first align the input object 3D feature tensors with an object
prototype. The quality of our quantization relies on the quality of the features that will yield the
correct rotation alignment. We show the qualitative performance of such rotation assignment on
CARLA, BigBIRD and CLEVR datasets in Figure 6.10. For each of those 3 × 7 grids, the first
row shows the input RGB images of the same object category in different poses, the second row
shows the bird’s eye view of the same RGBs unprojected in 3D space, and the third row shows
the bird’s eye view of the same unprojected RGBs but warped to the pose that best matches
with the object in the first. We conduct this matching on top of our 3D feature space by doing a
rotation aware search. As shown in the visualizations, our model can warp the objects in different
orientations to an orientation in the vicinity of the pose of the target object.

Figure 6.10: Rotational alignment results showing relative pose estimation between two ran-
domly posed RGBs of the same object category. For each of the 3× 7 grids, the first row shows
7 input RGB images of the same object category in different poses. The second row shows the
projection of the RGB-D point cloud in a birds eye view. The last row shows the projection of the
same RGB-D point but warped to the pose that best matches with the object in the first. Results
are shown on CARLA, BigBIRD and CLEVR datasets.
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XXXXXXXXXXTask
Iterations

Iter 0 Iter 1 Iter 2 Iter 3

Feature Learning 0.72 0.76 0.79 0.79
Quantization 0.51 0.63 0.65 0.66
Detection 0.43 0.48 0.51 0.52

Table 6.4: Performance across training EM iterations of our model in CLEVR. Feature learning is
measured using the same technique as Table 6.3. Object quantization uses the same measurement
technique as Fig. 6.5 (a). Detection performance is measured by meanAP at IoU = 0.5.

6.3.4 Joint training of 3D object detection, feature learning and clustering
Table 6.4 shows evaluations of our different modules during 4 iterations of EM. We see that
the performance of all our modules improves over iterations. To initialize the weights for the
modules (Iteration 0), we warm-start the 3D scene features using RGB view and occupancy
prediction (rgbocc), and use the 3D object proposals provided by triangulated 2D boxes from
2D objectness detector to train the detector, visual features and prototypes. From Iteration 1
onwards, we use the 3D detected boxes from the trained detector as inputs, and use 3D mining to
update the features. We subsequently improve the detector and the rest of the modules iteratively.
We show that all modules can boostrap one another and continually improve over iterations. We
further show our detector improvement over time in Figure 6.4. More results are available on our
project website: https://shamitlal.github.io/project pages/3DQ Nets/3dq nets.html.

6.3.5 Scene parsing using prototypes

Figure 6.11: Real world scene parsing results.

Our learnt prototypes capture each object instance in its canonical pose. We use these proto-
types for task of scene parsing. Given a new scene, we first detect all the objects and extract their
features from the scene. Then, we match the object-centric feature maps with all the prototypes
using a rotation aware similarity check explained in Section 6.2.1. For each detected object in-
stance in the scene, we visualize the matched prototype number (C) and the respective rotation
angle along vertical axis (R) as seen in Figure 6.11, Figure 6.12, Figure 6.13, and Figure 6.14.
We also visualize the respective prototypes by neurally rendering them to images.
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Figure 6.12: Scene parsing results for CARLA dataset.
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Figure 6.13: Scene parsing results for CLEVR dataset.
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Figure 6.14: Scene parsing results for Replica dataset.
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Chapter 7

Few-shot Concept learning and VQA with
Disentangled 3D concepts

7.1 Introduction
In the previous chapter, we show how an agent can learn to correspond the same or similar objects
in images without explicit annotations from humans. Since the agent knows to how to correspond
objects that it has seen in the past, it becomes possible for the agent to recognition a new object
from one or a few samples. In this chapter, we want to push the idea forwards: instead of learning
to recognize the whole objects, can our model learns to recognize more general concepts, such
as color, shapes, and textures?

Humans can learn diverse concepts from just one or a few samples. Consider the example
in Figure 7.1. Assuming there is a person who has no prior knowledge about blue and carrot,
by showing this person an image of a blue carrot and telling him “this is an carrot with blue
color”, the person can easily generalize from this example to (1) recognizing carrots of varying
colors, 3D poses and viewing conditions and under novel background scenes, (2) recognizing
the color blue on different objects, (3) combine these two concepts with other concepts to form a
novel object coloring he/she has never seen before, e.g., red carrot or blue tomato and (4) using
the newly learned concepts to answer questions regarding the visual scene. Motivated by this,
we explore computational models that can achieve these four types of generalization for visual
concept learning.

We propose disentangling 3D prototypical networks (D3DP-Nets), models that learn to dis-
entangle RGB-D images into objects, their 3D locations, sizes, 3D shapes and styles, and the
background scene, as shown in Figure 7.2. Our model can learn to detect objects from a few
3D object bounding box annotations and can further disentangle objects into different attributes
through a self-supervised view prediction task. Specifically,D3DP-Nets use Geometry-Aware
Recurrent Networks (GRNNs), introduced in Chapter 2 to transform an input RGB-D (2.5D)
image to a 3D scene feature map. From the scene feature map, our model learns to detect objects
and disentangles each object into a 3D shape code and an 1D style code through a shape/style
disentangling antoencoder. We use adaptive instance normalization layers [47] to encourage

0This chapter is based on the paper published previously on ICLR 2021 [93].

77



Figure 7.1: Given a single image-language example regarding new concepts (e.g., blue and
carrot), our model can parse the object into its shape and style codes and ground them with Blue
and Carrot labels, respectively. On the right, we show tasks the proposed model can achieve
using this grounding.(a) It can detect the object under novel style, novel pose, and in novel scene
arrangements and viewpoints. (b) It can detect a new concept like blue broccoli. (c) It can
imagine scenes with the new concepts. (d) It can answer complex questions about the scene.

shape/style disentanglement within each object. Our key intuition is to represent objects and
their shapes in terms of 3D feature representations disentangled from style variability so that
the model can correspond objects with similar shape by explicitly rotating and scaling their 3D
shape representations during matching.

With the disentangled representations, D3DP-Nets can recognize new concepts regarding ob-
ject shapes, styles and spatial arrangements from a few human-supplied labels by training con-
cept classifiers only on the relevant feature subspace. Our model learns object shapes on shape
codes, object colors and textures on style codes, and object spatial arrangements on object 3D
locations. We show how the features relevant for each linguistic concept can be inferred from a
few contrasting examples. These concept classifiers learn to attend to the discriminative property
of the concept and ignore irrelevant visual features. By attending only to the relevant features,
they can generalize with far fewer examples and can recognize novel attribute compositions not
present in the training data.

We test D3DP-Nets in few-shot concept learning, visual question answering (VQA) and
scene generation. We train concept classifiers for object shapes, object colors/materials, and spa-
tial relationships on our inferred disentangled feature spaces, and show they outperform current
state-of-the-art [45, 77], which use 2D representations. We show that a VQA modular network
that incorporates our concept classifiers shows improved generalization over the state-of-the-art
[77] with dramatically fewer examples. Last, we empirically show that D3DP-Nets generalize
their view predictions to scenes with novel number, category and styles of objects, and compare
against state-of-the-art view predictive architectures of [23].

The main contribution of this paper is to identify the importance of using disentangled 3D
feature representations for few-shot concept learning. We show the disentangled 3D feature
representations can be learned using self-supervised view prediction, and they are useful for de-
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Figure 7.2: Architecture for disentangling 3D prototypical networks ( D3DP-Nets). (a)
Given multi-view posed RGB-D images of scenes as input during training, our model learns
to map a single RGB-D image to a completed scene 3D feature map at test time, by training for
view prediction. From the completed 3D scene feature map, our model learns to detect objects
from the scene. (b) In each 3D object box, we apply a shape-style disentanglement autoencoder
that disentangles the object-centric feature map to a 3D (feature) shape code and a 1D style code.
(c) Our model can compose the disentangled representations to generate a novel scene 3D fea-
ture map. We urge the readers to refer the video in the supplimentary material for an intuitive
understanding of the architecture

tecting and classifying language concepts by training them over the relevant only feature subsets.
The proposed model outperforms the current state-of-the-art in VQA in the low data regime and
the proposed 3D disentangled representation outperforms similar 2D or 2.5D ones in few-shot
concept classification.

7.2 Disentangling 3D Prototypical Networks (D3DP-Nets)
The architecture of D3DP-Nets is illustrated in Figure 7.2. D3DP-Nets consists of two main com-
ponents: (a) an image-to-scene encoder-decoder, and (b) an object shape/style disentanglement
encoder-decoder. Next, we describe these components in detail.

Image-to-scene encoder-decoder D3DP-Nets use Geometry-Aware Recurrent Networks (GRNNs),
introduced in Chapter 2, to map an input RGB-D image I to a 3D feature map M = GRNN(I) ∈
Rw×h×d×c, of the scene, where w, h, d, c denote width, height, depth and number of channels,
respectively. To initialize the weights of the encoder, we follow the same unsupervised view pre-
diction and occupancy prediction loss used for pretraining 3DQ-Nets (Chapter 6 Equation 6.1).
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Specifically, to predict a novel view and a complete occupancy map, the scene feature map M
is oriented to a sampled query viewpoint vq and decoded to an RGB image and occupancy grid,
and then compared with the ground truth RGB (Iq) and occupancy (Oq) respectively:

Lv =‖DecRGB(M, vq)− Iq‖1 + log(1 + exp(−Oq ·Decocc(M, vq))), (7.1)

The RGB output is trained with a regression loss, and the occupancy is trained with a logistic
classification loss. Occupancy labels are computed through raycasting. To disentangle attributes
of an object, it is critcial that the model can detect the object in the first place. To detect objects,
we train a 3D object detector that takes as input the scene feature map M and predicts 3D axis-
aligned bounding boxes using groundtruth 3D bounding boxes. Details for the object detector
are provide in Chapter 2 Section 2.2.2.

7.2.1 Object shape/style disentanglement
As the style of an image can be understood as a property which is shared across its spatial
dimensions, previous works [48, 57] use adaptive instance normalization [47] as an inductive
bias to disentangle style and contents in the images, and use the disentangled embeddings to
do style transfer between a pair of images. D3DP-Nets uses this same inductive bias in its
decoder to disentangle the style and 3D shape of an object. The 3D shape we consider here is
not analogous to 3D occupancy. It is a blend of 3D occupancy and texture (spatial arrangement
of color intensities).

Given a set of 3D object boxes {bo|o = 1 · · · |O|} where O is the set of objects in the scene,
D3DP-Nets obtain corresponding object feature maps Mo = crop(M, bo) by cropping the scene
feature map M using the 3D bounding box coordinates bo. We use ground-truth 3D boxes at train-
ing time and detected boxes at test time. Each object feature map is resized to a fixed resolution of
16×16×16, and fed to an object-centric autoencoder whose encoding modules predict a 4D shape
code zoshp = Eshp(Mo) ∈ Rw×h×d×c and a 1D style code zosty = Esty(Mo) ∈ Rc. A decoder D
composes the two using adaptive instance normalization (AIN) layers [47] by adjusting the mean
and variance of the 4D shape code based on the 1D style code: AIN(z, γ, β) = γ

(
z−µ(z)
σ(z)

)
+ β,

where z is obtained by a 3D convolution on zshp, µ and σ are the channel-wise mean and standard
deviation of z, and β and γ are extracted using single-layer perceptrons from zsty. The object
encoders and decoders are trained with an autoencoding objective and a cycle-consistency ob-
jective which ensure that the shape and style code remain consistent after composing, decoding
and encoding again (see Figure 6.2 (b)):

Ldis =
1

|O|

|O|∑
o=1

‖Mo −D(Eshp(Mo),Esty(Mo))‖2︸ ︷︷ ︸
autoencoding loss

+
∑

i∈O\o
Lc−shp(Mo,Mi) + Lc−sty(Mo,Mi)︸ ︷︷ ︸

cycle-consistency loss

 ,

(7.2)

where Lc−shp(Mo,Mi) = ‖Eshp(Mo)−Eshp(D(Eshp(Mo),Esty(Mi)))‖2 is the shape consistency
loss and Lc−sty(Mo,Mi) = ‖Esty(Mo)−Esty(D(Eshp(Mi),Esty(Mo)))‖2 is the style consistency
loss.
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We further include a view prediction loss on the synthesized scene feature map M̄, which is
composed by replacing each object feature map Mo with its re-synthesized version D(zoshp, z

o
sty),

resized to the original object size, as shown in Figure 6.2(c). The view prediction reads: Lview−pred−synth =
‖Dec

(
Rot(M̄, vt+1)

)
− It+1‖1. The total unsupervised optimization loss for D3DP-Nets reads:

Luns = Lview−pred + Lview−pred−synth + Ldis. (7.3)

7.2.2 3D disentangled prototype learning
Given a set of human annotations in the form of labels for object attributes (shape, color, material,
size), our model computes prototypes for each concept (e.g. ”red” or ”sphere”) in an attribute,
using only the relevant feature embeddings. For example, object category prototypes are learned
on top of shape codes, and material and color prototypes are learned on top of style codes. In
order to classify a new object example, we compute the nearest neighbors between the inferred
shape and style embeddings from the D3DP-Nets with the prototypes in the prototype dictionary,
as shown in Figure 7.3. This non-parametric classification method allows us to detect objects
even from a single example, and also improves when more labels are provided by co-training the
underlying feature representation space as in [117].

To compute the distance between an embedding x and a prototype y, we define the following
rotation- aware distance metric:

〈x, y〉R =

{
〈x, y〉 if x, y are 1D
maxr∈R〈Rot(x, r), y〉 if x, y are 4D

(7.4)

where Rot(x, r) explicitly rotates the content in 3D feature map x with angle r through trilinear
interpolation. We exhaustively search across rotations R, in a parallel manner, considering in-
crements of 10◦ along the vertical axis. This is specifically shown in the bottom right of Figure
7.3 while computing the Filter Shape function.

Our model initializes the concept prototypes by averaging the feature codes of the labelled in-
stances. We build color and material concept prototypes, e.g., red or rubber, by passing the style
codes through a color fully connected module and a material fully connected module respec-
tively, and then averaging the outputs. For object category prototypes, we use a rotation-aware
averaging over the (4D) object shape embeddings, which are produced by a 3D convolutional
neural module over shape codes. Specifically, we find the alignment r for each shape embed-
ding that is used to calculate 〈z0, zi〉R, and average over the aligned embeddings to create the
prototype.

When annotations for concepts are provided, we can jointly finetune our prototypes and
neural modules (as well as D3DP-Net weights) using a cross entropy loss, whose logits are
inner products between neural embeddings and prototypes. Specifically, given P (oa = c) =

exp(〈fa(zo),pc〉R)∑
d∈Ca exp(〈fa(zo),pd〉R)

where 〈·, ·〉R represents the rotation-aware distance metric, fa is the neural
module for attribute a, Ca is the set of concepts for attribute a, and oa is the value of attribute a
for object o, and pc is the prototype for concept c. The loss used to train prototypes is:

Lprototype = − 1

|O|
∑
o∈O

∑
a∈A

∑
c∈Ca

1oa=c logP (oa = c) + 1oa 6=c logP (oa 6= c) (7.5)
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Figure 7.3: D3DP-VQA Modular Networks. Given a question-image pair and a list of learned
prototype dictionaries (left), D3DP-Nets parse the visual scene to object shapes, styles, loca-
tions and sizes codes (top-right), while the semantic language parser converts the question to
an executable program. The generated program is executed sequentially to answer the question
(bottom-right). Note that in order to associate different poses of the same shape (Filter Shape),
our model does a rotation-aware search between the indexed prototype and the candidate objects.

where A is the set of attributes.

7.3 Experiments
We test D3DP-Nets in few-shot learning of object category, color and material, and compare
against state-of-the-art 2D and 2.5D shape-style disentangled CNN representations (Sections
7.3.1). We integrate these concept classifiers in a visual question answering modular system (see
Figure 7.3) and show it can answer questions about images more accurately than the state-of-the-
art in the few-shot regime (Section 7.3.2). In addition, we test D3DP-Nets on novel 3D scene
generation. Furthermore, we show our model can generate a 3D scene (and its 2D image renders)
based on a language utterance description (Section 7.3.3).

7.3.1 Few-shot object shape and style category learning
We evaluate D3DP-Nets in its ability to classify shape and style concepts from few annotated
examples on three datasets: i) CLEVR dataset [53]: it is comprised of cubes, spheres and cylin-
ders of various sizes, colors and materials. We consider every unique combination of color and
material categories as a single style category. The dataset has 16 style classes and 3 shape classes
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Shape concept category: Plant Style concept category: Cream

Figure 7.4: Replica dataset. On the left, we show two objects in different scenes belonging to
the same shape cateogry ‘Plant‘. On the right, we show two objects belonging to the same style
category ‘Cream‘.

CLEVR Real Veggie Data Replica

5 shot 1 shot 5 shot 1 shot 5 shot 1 shot

Style Shape Style Shape Style Shape Style Shape Style Shape Style Shape

D3DP-Net 0.79 0.86 0.61 0.70 0.61 0.52 0.53 0.44 0.48 0.58 0.46 0.51
3DP-Net 0.14 0.64 0.09 0.57 0.38 0.18 0.31 0.19 0.31 0.45 0.27 0.42
2D MUNIT 0.50 0.54 0.41 0.47 0.43 0.48 0.39 0.38 0.30 0.60 0.23 0.42
2.5D MUNIT 0.47 0.58 0.46 0.55 0.41 0.32 0.39 0.33 0.23 0.42 0.20 0.40
GQN 0.09 0.52 0.11 0.45 0.24 0.41 0.22 0.34 0.25 0.31 0.19 0.26
D3D-Net 0.43 0.48 0.26 0.40 0.31 0.28 0.18 0.24 0.23 0.29 0.10 0.14
MB(Supervised) 0.60 0.89 0.36 0.75 0.42 0.71 0.35 0.67 0.33 0.32 0.19 0.24

Table 7.1: Five & one shot classification accuracy for shape and style concepts in CLEVR [53],
Real Veggie, and Replica datasets

in total. ii) Real Veggie dataset: it is a real-world scene dataset we collected that contains 800
RGB-D scenes of vegetables placed on a table surface. The dataset has 6 style classes and 7
shape classes in total. iii) Replica dataset [121]: it consists of 18 high quality reconstructions
of indoor scenes. We use AI Habitat simulator [76] to render multiview RGB-D data for it. We
use the 152 instance-level shape categories provided by Replica. Due to lack of style labels, we
manually annotate 16 style categories. Figure 7.4 shows one example for both shape and style
category.

We train D3DP-Nets self-supervisedly on posed multiview images in each dataset and learn
the prototypes for each concept category. During training, we consider 1 and 5 labeled instances
for each shape and style category present in the dataset. During testing, we consider a pool of
1000 object instances.

In this experiment, we use ground-truth bounding boxes to isolate errors caused by different
object detection modules. We compare D3DP-Nets with 2D, 2.5D and 3D versions of Proto-
typical Networks [117] that similarly classify object image crops by comparing object feature
embeddings to prototype embeddings. Specifically, we learn prototypical embeddings over the
visual representations produced by the following baselines: (i) 2D MUNIT [48] which disentan-
gles shape and style within each object-centric 2D image RGB patch using the 2D equivalent
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of the shape-style disentanglement architecture of our model, and learns using an autoencoding
objective (ii) 2.5D MUNIT an extension of 2D MUNIT which uses concatenated RGB and depth
as input. (iii) 3DP-Nets, a version of D3DP-Nets where object shape-style disentanglement is
omitted, this version corresponds to the scene representation learning model of Tung et al. [135],
introduced in Chapter 2. (iv) Generative Query Network GQN of Eslami et al. [22] which en-
codes multiview images of a scene and camera poses into a 2D feature map and is trained using
cross-view prediction, similar to our model. (v) D3D-Nets, a version of D3DP-Nets where pro-
totypical nearest neighbour retrieval is replaced with a linear layer which predicts the class prob-
abilities. (iv) Meta-Baseline MB of Chen et al. [10] is the SOTA supervised few-shot learning
model, pre-trained using ImageNet.

All baselines except MB are trained with the same unlabeled multiview image set as our
method. All models classify each test image into a shape, and style category.

Few-shot concept classification results are shown in Table 7.1. D3DP-Nets outperforms all
unsupervised baselines. Interestingly, D3DP-Nets give better classification accuracy on the 1-
shot task than almost all of the unsupervised baselines on the 5-shot task. Figure 7.5 shows a
visualization of the style codes produced by D3DP-Nets (left) and 2.5D MUNIT baseline (right)
on 2000 randomly sampled object instances from CLEVR using t-SNE [72]. Each color repre-
sents a unique CLEVR style class. Indeed, in D3DP-Nets, codes of the same class are placed
together, while for the 2.5D MUNIT baseline, this is not the case.

7.3.2 Few-shot visual question answering

Figure 7.5: t-SNE visualization on styles codes.

We integrate concept detectors built on the
D3DP-Nets representation into modular neu-
ral networks for visual question answering, in
which a question about an image is mapped
to a computational graph over a small num-
ber of reusable neural modules including ob-
ject category detectors, style detectors and
spatial expression detectors. Specifically, we
build upon the recent Neuro-Symbolic Con-
cept Learner (NSCL) [77], as shown in Fig-
ure 7.3. In NSCL, the input and output of
different neural modules are probability distri-
butions over 2D object proposals denoting the
probability that the executed subprogram is referring to each object, and their object category,
color and material classifiers also use nearest neighbors over learnt prototypes. For example, in
the question “How many yellow objects are there?”, the model first uses the color classifier to
predict for all objects the probability that they are yellow, and then uses the resulting probability
map to give an answer.NSCL learns 1D prototypes for object shape, color and material categories
and classifies objects to labels using nearest neighbors to these prototypes. In our D3DP-Nets-
VQA architecture, we have 3D instead of 2D object proposals, and disentangled 3D shape and
1D color/material and spatial relationship prototypes instead.

We compare D3DP-VQA against the following models: i) NSCL-2D (with and without Ima-
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VQA Model
In domain test set One shot test set

Number of Training Examples Number of Training Examples

10 25 50 100 250 10 25 50 100 250

Our full model 0.809 0.872 0.902 0.923 0.939 0.775 0.836 0.834 0.828 0.845

without 3D shape prototypes 0.798 0.858 0.538 0.905 0.932 0.410 0.410 0.517 0.745 0.771
without shape/style disentanglement 0.458 0.407 0.616 0.806 0.788 0.457 0.402 0.616 0.807 0.792
without 3D shape prototypes and

without shape/style disentanglement 0.718 0.829 0.849 0.868 0.894 0.608 0.681 0.688 0.692 0.701

Entangled disentangled features 0.648 0.565 0.899 0.917 0.928 0.619 0.542 0.812 0.831 0.813
InstanceNorm disentangled features

+ rotation-aware check 0.606 0.831 0.875 0.894 0.905 0.627 0.775 0.832 0.836 0.861

2D NSCL [77] 0.733 0.927 0.959 0.978 0.990 0.594 0.708 0.703 0.789 0.743
2D NSCL [77]

without ImageNet pretraining 0.514 0.624 0.682 0.844 0.931 0.467 0.502 0.553 0.624 0.679

2.5D NSCL [77] 0.594 0.737 0.828 0.881 0.925 0.528 0.633 0.651 0.633 0.633
2.5D NSCL [77] disentangled 0.436 0.486 0.640 0.735 0.842 0.430 0.462 0.517 0.561 0.564

Table 7.2: VQA results with model compared to ablations and 2D baselines in CLEVR [53]
dataset.

geNet pretraining) the state of the art model of Mao et al. [77] that uses a ResNet-34 pretrained on
ImageNet as input feature representations ii) NSCL-2.5D, in which the object visual representa-
tions for shape/color/material are computed over RGB and depth concatenated object patches as
opposed to RGB alone. This model is pretrained with a view prediction loss using the CLEVR
dataset in Sec. 7.3.1 iii) NSCL-2.5D-disentangle that uses disentangled object representations
generated by our 2.5D MUNIT disentangling model, iv) D3DP without 3D shape prototypes, a
version of D3DP-Nets that replaces the 3-dimensional shape codes with 1D ones obtained by
spatial pooling v) D3DP without disentanglement, that learns prototypes for shape, color and
material on top of entangled 3D tensors.

We consider the same supervision for our model and baselines in the form of densely anno-
tated scenes with object attributes and 3D object boxes. We use ground-truth neural programs so
as to not confound the results with the performance of a learned parser.

VQA performance results are shown in Table 7.2. We evaluate by varying the number of
training scenes from 10 to 250. For each training scene we generate 10 questions. The original
CLEVR dataset included 70,000 scenes and 700,000 questions, so even when training with 250
scenes, we are training with 0.35% the number of original scenes. Our full model outperforms
all of the alternatives, showing the importance of both the 3D feature representations as well
as disentanglement of shape and style. To test our model’s one shot generalization ability on
questions about object categories it had not seen in the original training set, we introduce a new
test set consisting of only novel objects. We generate a test set of 500 scenes in the CLEVR
environment with three new objects: “cheese”, “garlic”, and “pepper” and introduce them to
our model and baselines using one example image of each, associated with its shape category
label. In Figure 7.6, we show example scene/question pairs for the in domain test set and one
shot test set. The results described in Table 7.2 indicate that our model is able to maintain its
ability to answer questions even when seeing completely novel objects and with very few training
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In	domain	test	split One-shot	test	split

Q:	What	is	the	shape	of	the	shiny	red
	object	in	front	of	the	yellow	sphere?
A:	cube

Q:	What	is	the	shape	of	the	shiny	red
object	behind	the	large	yellow	pepper?
A:	cheese

Pepper CheeseGarlicPepper CheeseGarlicPepper CheeseGarlic

(a) (b)

Prototype imagesOne-shot test splitIn domain test split

Figure 7.6: (a) The left scene/question pair is from the in domain test set, and the right
scene/question pair is from the one shot test set. The colors, materials, sizes, and spatial re-
lationships tested in both splits are the same. The only difference is that the one shot test set
contains shapes the model did not see while training and was only exposed to one example be-
fore the testing phase. (b) The prototype images shown to the model before starting the one shot
testing phase.

examples. The SOTA 2D model outperforms our model on the in domain test set because it is
able to exploit pretraining on ImageNet, which our models are unable to do. However, our model
is able to adapt much better than both the 2D and 2.5D baselines when operating at the extremely
low data regime or the one shot generalization setting.

7.3.3 3D scene generation from language utterances
We test D3DP-Nets on the task of scene generation from language utterances.Given annotations
for each prototype,our model can generate 3D scenes that comply with a language utterance, as
seen in Figure 7.7 (b). We assume the parse tree of the utterance is given. Our model generates
each object’s 3D feature map by combining shape and style prototypes as suggested by the ut-
terance, and placing them iteratively on a background canvas making sure it complies with the
spatial constraints in the utterance [94]. Our model can generate shape and style combinations
not seen at training time. We neurally render the feature map to generate the RGB image.
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“Green cube to the left of brown 
sphere to the front of brown sphere 
to right front of blue sphere”

“Gray cube to the left of blue sphere to 
the left of cyan cylinder to the top of 
green sphere to the top of purple 
sphere to the bottom right of blue 
cylinder”

“Blue cube to the left front of cyan cube 
to the left front of purple sphere to the 
front of purple cylinder to the right of 
green cube to the right of yellow cube to 
the behind of purple cube”

“Green cylinder to the right of cyan 
sphere to the top of yellow sphere to 
the left of cyan sphere”

“Green sphere to the left of cyan 
cylinder to the top left of yellow cube”

“Green sphere to the top of red sphere 
to the bottom of purple cube to the 
right of red cylinder”

“Blue cube to the bottom of purple 
cube to the bottom of yellow sphere to 
the left of green cylinder to the top of 
cyan cube to the left of purple sphere 
to the bottom of purple cylinder”

Natural Language Utterance Neural Renders

View 1 (Ref view) View 2 

“Blue cylinder to the top left of cyan 
sphere to the top left of brown sphere 
to the bottom of red cylinder  to the 
right of cyan sphere to the bottom right 
of brown sphere”

Figure 7.7: Generating novel scenes using only a single example for each style and content class.
87



88



Part IV

Language understanding: Learning to
interpret language through visual

simulation
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Chapter 8

Grounding Language in the Learned
Visual simulator

8.1 Introduction
Consider the utterance “the tomato is to the left of the pot”. Humans can answer numerous
questions about the situation described, as well as reason through alternatives, such as, “is the
pot larger than the tomato?”, “can we move to a viewpoint from which the tomato is completely
hidden behind the pot?”, “can we have an object that is both to the left of the tomato and to
the right of the pot?” , and so on. How can we learn computational models that would permit a
machine to carry out similar types of reasoning that humans are capable of? One possibility if to
treat the task as text comprehension [17, 42, 55, 139] and train machine learning models using
supervision from utterances accompanied with question / answer pairs. However, information
needed for answering the questions is not contained in the utterance itself; training a model to
carry out predictions in absence of the relevant information would lead to overfitting. Associ-
ating utterances with RGB images that depict the scene described in the utterance, and using
both images and utterances for answering questions provides more world context and has been
shown to be helpful. Consider though that information about object size, object extent, occlusion
relationships, free space and so on, are only indirectly present in an RGB image, while they are
readily available given a 3D representation of the scene the image depicts. Though it would take
many training examples to learn whether a spoon can be placed in between the tomato and the
pot on the table, in 3D such experiment can be mentally carried out easily, simply by consid-
ering whether the 3D model of the spoon can fit in the free space between the tomato and the
pot. Humans are experts in inverting camera projection and inferring an approximate 3D scene
given an RGB image [87]. This paper similarly builds upon inverse graphics neural architectures
for providing the 3D visual representations to associate language, with the hope to inject spatial
reasoning capabilities into architectures for language understanding.

We propose associating language utterances to space-aware 3D visual feature represen-
tations of the scene they describe. We infer such 3D scene representations from RGB images of
the scene. Though inferring 3D scene representations from RGB images, a.k.a. inverse graphics

0This chapter is based on the paper published previously at CVPR 2020 [94].
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Figure 8.1: Embodied language grounding with implicit 3D visual feature representations.
Our model associates utterances with 3D scene feature representations obtained from GRNNs.
We map RGB images to 3D scene feature representations and 3D object boxes of the objects
present . (column 1). We map an utterance and its dependency tree to object-centric 3D feature
maps and cross-object relative 3D offsets using stochastic generative networks (column 2). We
map a referential expression to the 3D box of the object referent (column 3). Last, given a
placement instruction, we 3D localize the referents in the scene and infer the 3D desired location
for the object to be manipulated (column 4). We use predicted location to supply rewards for
trajectory optimization of placement policies.

is known to be a difficult problem [64, 103, 134], we build upon recent advances in computer
vision [135] that consider inferring from images a learnable 3D scene feature representation in
place of explicit 3D representations such as meshes, pointclouds or binary voxel occupancies
pursued in previous inverse graphics research [64, 103, 134]. Such learnable 3D scene feature
map emerges in a self-supervised manner by optimizing for view prediction in neural architec-
tures with geometry-aware 3D representation bottlenecks, as described in previous work of Tung
et al. [135]. After training, these architectures learn to map RGB video streams or single RGB
images to complete 3D feature maps of the scene they depict, inpainting by imagination oc-
cluded or missing details of the 2D image input. The contribution of our work is to use such
3D feature representations for language understanding and spatial reasoning. We train
modular generative networks that condition on the dependency tree of the utterance and predict
a 3D feature map of the scene the utterance describes. They do so by predicting appearance and
relative 3D location of objects, and updating a 3D feature workspace, as shown in Figure 8.1, 2nd
column. We further train modular discriminative networks that condition on a referential expres-
sion and detect the object referred to in the 3D feature map of the input RGB image, by scoring
object appearances and cross-object spatial arrangements, respectively, as shown in Figure 8.1,
3rd column. We call our model embodied since training the 2D image to 3D feature mapping
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requires supervision from a mobile—or more generally embodied—agent that moves around in
the 3D world, collects (posed) images and learns to predict visual results of its motion.

We demonstrate the benefits of associating language to 3D visual feature scene representa-
tions in three basic language understanding tasks:

(1) Affordability reasoning Our model can classify affordable (plausible) and unaffordable
(implausible) spatial expressions. For example, “A to the left of B, B to the left of C, C to the right
of A” describes a plausible configuration, while “A to the left of B, B to the left of C, C to the left
of A” describes a non-plausible scene configuration, where A, B, C any object mentions. Our
model reasons about plausibility of object arrangements in the inferred 3D feature map, where
free space and object 3D intersection can easily be learnt/evaluated, as opposed to 2D image
space.

(2) Referential expression detection Given a referential spatial expression, e.g., “the blue
sphere behind the yellow cube”, and an RGB image, our model outputs the 3D object bounding
box of the referent in the inferred 3D feature map, as shown in Figure 8.1 3rd column. Our 3D
referential detector generalizes across camera viewpoints better than existing state-of-the-art 2D
referential detectors [46] thanks to the view invariant 3D feature representation.

(3) Instruction following Given an object placement instruction, e.g., “put the cube behind
the book”, our referential 3D object detector identifies the object to be manipulated and our
generative network predicts its desired 3D goal location, as shown in Figure 8.1 4rth column.
We use such 3D goal location in trajectory optimization of object placement policies. We show
our model successfully executes natural language instructions.

In each task we compare against existing state-of-the-art models: the language-to-2D image
generation model of [16] and the 2D referential object detector of [46], which we adapt to have
same input as our model. Our model outperforms the baselines by a large margin in each of the
three tasks. We further show strong generalization of natural language learnt concepts from the
simulation to the real world thanks to the what-where decomposition employed in our generative
and detection networks, where spatial expression detectors only use 3D spatial information, as
opposed to object appearance and generalize to drastically different looking scenes without any
further annotations. Our model’s improved performance is attributed to i) its improved general-
ization across camera placements thanks to the viewpoint invariant 3D feature representations,
ii) its improved performance on free-space inference and plausible object placement in 3D over
2D. Many physical properties can be trivially evaluated in 3D while they need to be learned by
a large number of training examples in 2D with questionable generalization across camera view-
points. 3D object intersection is one such important property, very useful for spatial reasoning
of plausible object arrangements. Our datasets and code will be made publicly available upon
publication to facilitate reproducibility of our work.

8.2 Language grounding on 3D visual feature representations
We consider a dataset of 3D static scenes annotated with corresponding language descriptions
and their dependency trees, as well as a reference camera viewpoint. We further assume access
at training time to 3D object bounding boxes and correspondences between 3D object boxes
and noun phrases in the language dependency trees. The language utterances we use describe
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object spatial arrangements and are programmatically generated, same as their dependency trees,
using the method described in [52]. We infer 3D feature maps of the world scenes from RGB
images using Geometry-aware Recurrent Neural Nets (GRNNs) In Section 8.2.1, we describe
our proposed generative networks that condition on the dependency tree of a language utterance
and generate an object-factorized 3D feature map of the scene the utterance depicts. In Section
8.2.2, we describe discriminative networks that condition on the dependency tree of a language
utterance and the inferred 3D feature map from the RGB image and localize in 3D the object
being referred to. In Section 8.2.3, we show how our generative and discriminative networks of
Sections 8.2.1,8.2.2 can be used for following object placement instructions.

8.2.1 Language-conditioned 3D visual imagination
We train generative networks to map language utterances to 3D feature maps of the scene they
describe. They do so using a compositional generation process that conditions on the dependency
tree of the utterance (assumed given) and generates one object at a time, predicting its appearance
and location using two separate stochastic neural modules, what and where, as shown in Figure
8.2.

The what generation module GA(p, z;φ) is an stochastic generative network of object-centric
appearance that given a noun phrase p learns to map the word embeddings of each adjective and
noun and a random vector of sampled Gaussian noise z ∈ R50 ∼ N (0, I) to a corresponding
fixed size 3D feature tensor M̂

o ∈ Rw×h×d×c and a size vector so ∈ R3 that describes the width,
height, and depth for the tensor. We resize the 3D feature tensor M̂

o
to have the predicted size

so and obtain Mo = Resize(M̂
o
, so). We use a gated mixture of experts [112] layer—a gated

version of point-wise multiplication—to aggregate outputs from different adjectives and nouns,
as shown in Figure 8.2.

The where generation module GS(s, z, ψ) is a stochastic generative network of cross-object
3D offsets that learns to map the one-hot encoding of a spatial expression s, e.g., “in front of”,
and a random vector of sampled Gaussian noise z ∈ R50 ∼ N (0, I) to a relative 3D spatial offset
dX(i,j) = (dX, dY, dZ) ∈ R3 between the corresponding objects. Let boi denote the 3D spatial
coordinates of the corners of a generated object.

Our complete generative network conditions on the dependency parse tree of the utterance
and adds one 3D object tensor Mo

i , i = 1...K at a time to a 3-dimensional feature canvas accord-
ing to their predicted 3D locations, where K is the number of noun phrases in the dependency
tree: Mg =

∑K
i=1 DRAW(Mo

i ,X
o
i ), where DRAW denotes the operation of adding a 3D feature

tensor to a 3D location. The 3D location X1 of the first object is chosen arbitrarily, and the
locations of the rest of the object is based the predicted cross-object offsets: Xo

2 = Xo
1 + dX(2,1).

If two added objects intersect in 3D, i.e., the intersection over union of the 3D object bounding
boxes is above a cross-validated threshold of 0.1, IoU(boi , b

o
j) > 0.1, we re-sample object loca-

tions until we find a scene configuration where objects do not 3D intersect, or until we reach
a maximum number of samples—in which case we infer the utterance is impossible to realize.
By exploiting the constraint of non 3D intersection in the 3D feature space, our model can both
generalize to longer parse trees than those seen at training time—by re-sampling until all spatial
constraints are satisfied—as well as infer plausibility of utterances, as we validate empirically in
Section 8.3.2. In 3D, non-physically plausible object intersection is easy to delineate from phys-
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the red shiny sphere is to the right of the gray rubber cylinder which is in front of…

red N(0,1) shiny N(0,1) sphere N(0,1)
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Figure 8.2: Mapping language utterances to object-centric appearance tensors and cross-
object 3D spatial offsets using conditional what-where generative networks.

ically plausible object occlusion, something that is not easy to infer with 2D object coordinates,
as we show empirically in Section 8.3.2, or at least you would need a much much larger number
of annotated training examples to do so. Given the 3D coordinates of two 3D bounding boxes
3D intersection over union is easy to learn with a classifier, but we simply use thresholding of
the computed 3D intersection over union.

We train our stochastic generative networks using conditional variational autoencoders.

8.2.2 Detecting referential expressions in 3D

We train discriminative networks to map spatial referential expressions, e.g., “the blue cube to
the right of the yellow sphere behind the green cylinder” and related RGB images, to the 3D
bounding box of the objects the expressions refer to. They do so using a compositional detection
process that conditions on the dependency tree of the referential expression (assumed given) and
predicts a 3D appearance detector template for each noun phrase, used to compute an object
appearance score, and 3D spatial classifier for each spatial expression, used to compute a spatial
compatibility score, as we detail below. Such compositional structure of our detector is necessary
to handle referential expressions of arbitrary length. Our detector is comprised of a what detec-
tion module and a where detection module, as shown in Figure 8.3. The what module DA(p; ξ) is
a neural network that given a noun phrase p learns to map the word embeddings of each adjective
and noun to a corresponding fixed-size 3D feature tensor f = DA(p; ξ) ∈ Rw×h×d×c, we used
w = h = d = 16 and c = 32. Our what detection module is essentially a deterministic alterna-
tive of the what generative stochastic network of Section 8.2.1. The object appearance score is
obtained by computing inner-product between the detection template DA(p; ξ) and the cropped
object 3D feature map CropAndResize(M, bo), where M = GRNN(I) and bo the 3D box of the
object. We feed the output of the inner product to a sigmoid activation layer.

The where detection module DS(s, bo1, b
o
2;ω) takes as input the 3D box coordinates of the

hypothesized pair of objects under consideration, and the one-hot encoding of the spatial utter-
ance s (e.g., “in front of”, “behind”), and predicts a score whether the two-object configuration
matches the spatial expression.

We train both the what and where detection modules in a supervised way. During training,
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Figure 8.3: 3D referential object detection. We exhaustively score all possible assignments
of noun phrases to detected 3D bounding boxes. Each assignment is scored based on unary
appearance scores and pairwise spatial scores, as described in the text.
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we use ground-truth associations of noun phrases p to 3D object boxes in the image for positive
examples, and random crops or other objects as negative examples. For cropping, we use ground-
truth 3D object boxes at training time and detected 3D object box proposals from the 3D object
detector at test time. We use positive examples from our training set and negative examples from
competing expressions as well as synthetic 3D object boxes in random locations.

Having trained our what and where detector modules, and given the dependency parse tree of
an utterance and a set of bottom up 3D object proposals, we exhaustively search over assignments
of noun phrases to detected 3D objects in the scene. We only keep noun phrase to 3D box
assignments if their unary matching score is above a cross-validated threshold of 0.4. Then, we
simply pick the assignment of noun phrases to 3D boxes with the highest product of unary and
pairwise scores. Our 3D referential detector resembles previous 2D referential detectors [13, 46],
but operates in 3D appearance features and spatial arrangements, instead of 2D.

8.2.3 Instruction following

Humans use natural language to program fellow humans e.g., “please, put the orange inside
the wooden bowl”. We would like to be able to program robotic agents in a similar manner.
Most current policy learning methods use manually coded reward functions in simulation or
instrumented environments to train policies, as opposed to visual detectors of natural language
expressions [133]. If visual detectors of “orange inside the wooden basket” were available, we
would use them to automatically monitor an agent’s progress towards achieving the desired goal
and supply rewards accordingly, as opposed to hard-coding them in the environment.

We use the language-conditioned generative and detection models proposed in Section 8.2.1,8.2.2
to obtain a reliable perceptual reward detector for object placement instructions with the follow-
ing steps, as shown in Figure 8.1 4rth column: (1) We localize in 3D all objects mentioned in
the instruction using the aforementioned 3D referential detectors. (2) We predict the desired
3D goal location for the object to be manipulated xogoal using our stochastic spatial arrangement
generative network GS(s, z;ψ)). (3) We compute per time step costs being proportional to the
Euclidean distance of the current 3D location of the object xot and end-effector 3D location xet
assumed known from forward dynamics, and the desired 3D goal object location xogoal and end-
effector 3D location xegoal: Ct = ‖xt−xgoal‖2

2, where xt = [xot ; x
e
t ] is the concatenation of object

and end-effector state at time step t and xgoal = [xogoal; x
e
goal]. We formulate this as a reinforce-

ment learning problem, where at each time step the cost is given by ct = ‖xt − xgoal‖2. We
use i-LQR (iterative Linear Quadratic Regulator) [127] to minimize the cost function

∑T
t=1 Ct. I-

LQR learns a time-dependent policy πt(u|x; θ) = N (Ktxt + kt,Σt), where the time-dependent
control gains are learned by model-based updates, where the dynamical model p(xt|,xt−1,ut) of
the a priori unknown dynamics is learned during training time. The actions u are defined as the
changes in the robot end-effector’s 3D position and orientation about the vertical axis, giving a
4-dimensional action space.

We show in Section 8.3.4 that our method successfully trains multiple language-conditioned
policies. In comparison, 2D desired goal locations generated by 2D baselines [133] often fail to
do so.
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Figure 8.4: Language to scene generation (Rows 1,2,4) and Language to image generation
(Row 3) from our model and the model of Deng et al [16] for utterances longer than those
encountered at training time. Both our model and the baseline are stochastic, and we sample
three generated scenes/images per utterance.

8.3 Experiments

We test the proposed language grounding model in the following tasks: (i) Generating scenes
based on language utterances (ii) classifying utterances based on whether they describe possible
or impossible scenes, (iii) detecting spatial referential expressions, and, (iv) following object
placement instructions. We consider two datasets: (i) The CLEVR dataset of Johnson et al. [52]
that contains 3D scenes annotated with natural language descriptions, their dependency parse
trees, and the object 3D bounding boxes. The dataset contains Blender generated 3D scenes
with geometric objects (Figure 8.1). Each object can take a number of colors, materials, shapes
and sizes. Each scene is accompanied with a description of the object spatial arrangements, as
well as its parse tree. Each scene is rendered from 12 azimuths and 4 elevation angles, namely,
{20o, 40o, 60o, 12o}. We train GRNNs for view prediction using the RGB image views in the
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training sets. The annotated 3D bounding boxes are used to train our 3D object detector. We
generate 800 scenes for training, and 400 for testing. The language is generated randomly with
a restriction to have maximum 2 objects for the training scenes. (ii) A veggie arrangement
dataset we collected in the real world. We built a camera dome comprised of 8 cameras placed in
a hemisphere above a table surface. We move vegetables around and collect multiview images.
We automatically annotate the scene with 3D object boxes by doing 3D pointcloud subtraction at
training time, we use the obtained 3D boxes to train our 3D object detector. At test time, objects
are detected from a single view using our trained 3D detector. We further provide category labels
for the vegetable present in single object scenes to facilitate association of labels to object 3D
bounding boxes. More elaborate multiple instance learning techniques could be used to handle
the general case of weakly annotated multi-object scenes [77]. We leave this for future work. We
show extensive qualitative results in the veggie arrangement dataset as a proof that our model
can effectively generalize to real world data if allowed multiview embodied supervision and
weak category object labels.

8.3.1 Language conditioned scene generation
We show language-conditioned generated scenes for our model and the baseline model of Deng
et al. [16] in Figure 8.4 for utterances longer than those encountered at training time. The model
of Deng et al. [16] that generates a 2D RGB image directly (without an intermediate 3D rep-
resentation) conditioned on a language utterance and its dependency tree. It predicts absolute
2D locations and 2D box sizes for objects and their 2D appearance feature maps, warped in pre-
dicted locations, and neurally decoded into an RGB image. We visualize our model’s predictions
in two ways: i) neural renders are obtained by feeding the generated 3D assembled canvas
to the 3D-to-2D neural projection module of GRNNs, ii) Blender renders are renderings of
Blender scenes that contain object 3D meshes selected by small feature distance to the language
generated object 3D feature tensors, and arranged based on the predicted 3D spatial offsets.

Our model re-samples an object location when they detect the 3D intersection-over-union
(IoU) computed from the predicted 3D object boxes of the newly added object with existing
ones is higher than a cross-validated threshold of 0.1. The model of Deng et al. [16] is trained
to handle occluded objects. Notice though that it generates weird configurations as the number
of objects increase. We tried imposing constraints of object placement using 2D IoU threshold
in our baseline, but ran into the problem that we could not find plausible configurations for strict
IoU threshdolds, and we would obtain non-sensical configurations for low Iou thresholds. Note
that 2D IoU cannot discriminate between physically plausible object occlusions and physically
implausible object intersection. Reasoning about 3D object non intersection is indeed much
easier in a 3D space.

8.3.2 Affordability inference of natural language utterances
We test our model and baselines in their ability to classify language utterances as describing
sensical or non-sensical object configurations. We created a test set of 100 NL utterances, 50 of
which are affordable, i.e., describe a realizable object arrangement, e.g., “a red cube in front of
a blue cylinder and in front of a red sphere, the blue cylinder is in front of the red sphere.”, and
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50 are unaffordable, i.e., describe a non-realistic object arrangement, e.g., “a red cube is behind
a cyan sphere and in front of a red cylinder, the cyan sphere is left behind the red cylinder”.
In each utterance, an object is mentioned multiple times. The utterance is unaffordable when
these mentions are contradictory. Answering correctly requires spatial reasoning over possible
object configurations. Both our model and baselines have been trained only on plausible
utterances and scenes. We use our dataset only for evaluation. This setup is similar to
violation of expectation [102]: the model detects violations while it has only been trained on
plausible versions of the world.

Our model infers affordability of a language utterance by generating the 3D feature map of
the described scene, as detailed in Section 8.2.1. When an object is mentioned multiple times
in an utterance, our model uses the first mention to add it in the 3D feature canvas, and uses
that pairwise object spatial classifier DS of Section 8.2.2 to infer if the predicted configuration
also satisfies the later constraints. If not, our model re-samples object arrangements until a
configuration is found or a maximum number of samples is reached.

We compare our model against a baseline based on the model of Deng et al. [16]. Similar
to our model, when an object is mentioned multiple times, we use the first mention to add it in
the 2D image canvas, and use pairwise object spatial classifiers we train over 2D bounding box
spatial information—as opposed to 3D—to infer if the predicted configuration also satisfies the
later constraints. Note that there are no previous works that attempt this language affordability
inference task, and our baseline essentially performs similar operations as our model but in a 2D
image generation space.

We consider a sentence to be affordable if the spatial classifier predicts a score above 0.5
for the later constraint. Our model achieved an affordability classification accuracy of 95%
while the baseline 79.3%. The result suggests an improved ability to reason about affordable
and non affordable object configurations in 3D as opposed to 2D image space.

8.3.3 Detecting spatial referential expressions
We use the same dataset and train/test split of scenes as in the previous section. For each anno-
tated scene, we consider the first mentioned object as the one being referred to, that needs to be
detected. In this task, we compare our model with a variant of the modular 2D referential object
detector of Hu et al. [46] that also takes as input the dependency parse tree of the expression.
We train the object appearance detector for the baseline same as for our model using positive and
negative examples but the inner product is on 2D feature space as opposed to 3D. We also train
a pairwise spatial expression classifier to map width, height and x,y coordinates of the two 2D
bounding boxes and the one-hot encoding of the spatial expression, e.g., “in front of” to a score
reflecting whether the two boxes respect the corresponding arrangement. Note that our pairwise
spatial expression classifier use 3D box information instead which helps it to generalize across
camera placements.

Our referential detectors are upper bounded by the performance of the Region Proposal Net-
works (RPNs) in 3D for our model and in 2D for the baseline, since we compare language-
generated object feature tensors to object features extracted from 2D and 3D bounding box pro-
posals. We compare RPN performance in Table 8.1. An object is successfully detected when
the predicted box has an intersection over union (IoU) at least 0.5 with the groundtruth bounding
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mAP ours RGB-D [100] RGB-D ours RGB [100] RGB

2D 0.993 0.903 0.990 0.925
3D 0.973 - 0.969 -

Table 8.1: Mean average precision for category agnostic region proposals. Our 3D RPN
outperforms the 2D state-of-the-art RPN of Faster R-CNN [100].
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Figure 8.5: Detecting referential spatial expressions. Given a scene and a referential expres-
sion, our model localizes the object being referred to in 3D, while our baseline in 2D.

box. For our model, we project the detected 3D boxes to 2D and compute 2D mean average pre-
cision (mean AP). Both our model and the baseline use a single RGB image as input as well as a
corresponding depth map, which our model uses during the 2D-to-3D unprojection operation and
the 2D RPN concatenates with the RGB input image. Our 3D RPN that takes the GRNN map M
as input better delineates the objects under heavy occlusions than the 2D RPN of faster-RCNN
[100].

We show quantitative results for referential expression detection in Table 8.2 with groundtruth
as well as RPN predicted boxes, and qualitative results in Figure 8.5. In the “in-domain view”
scenario, we test on camera viewpoints that have been seen at training time, in the “out-domain
view” scenario, we test on novel camera viewpoints. An object is detected successfully when
the corresponding detected bounding box has an IoU of 0.5 with the groundtruth box (in 3D
for our model and in 2D for the baseline). Our model greatly outperforms the baseline for two
reasons: a) it better detects objects in the scene despite heavy occlusions, and, b) even with
groundtruth boxes, because the 3D representations of our model do not suffer from projection
artifacts, they better generalize across camera viewpoints and object arrangements.
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Ours [46] Ours - GT 3D boxes [46] - GT 2D boxes
in-domain view 0.87 0.70 0.91 0.79

out-domain view 0.79 0.25 0.88 0.64

Table 8.2: F1-Score for detecting referential expressions. Our model greatly outperforms
the baseline with both groundtruth and predicted region proposals, especially for novel camera
views.

8.3.4 Manipulation instruction following
We use the PyBullet Physics simulator [1] with similar setup as our CLEVR scenes. We use a
simulated KUKA robot arm as our robotic platform. We use a cube and a bowl, using the same
starting configuration for each scene, where the cube is held by the robot right above the bowl.
We fix the end-effector to always point downwards, and we assume the object to be in robot’s
hand at the beginning of each episode.

We compare our model against the 2D generative baseline of [16] that generates object loca-
tions in 2D, and thus supply costs of the form: C2D(xt) = ‖x2D

t −x2D
goal‖2

2. We show in Table 8.3
success rates for different spatial expressions, where we define success as placing the object in
the set of locations implied by the instruction. Goal locations provided in 2D do much worse in
guiding policy search than target object locations in 3D supplied by our model. This is because
2D distances suffer from foreshortening and reflect planning distance worse than 3D ones. This
is not surprising: in fact, the robotics control literature almost always considers desired locations
of objects to be achieved to be in 3D [66, 68]. In our work, we link language instructions with
such 3D inference using inverse graphics computer vision architectures for 2D to 3D lifting in
an implicit learnable 3D feature space.

Language Exp. left left-behind left-front right right-behind right-front inside
Baseline 4/5 1/5 3/5 0/5 2/5 0/5 1/5

Ours 5/5 3/5 5/5 5/5 5/5 3/5 5/5

Table 8.3: Success rates for executing instructions regarding object placement. Policies
learnt using costs over 3D configurations much outperform those learnt with costs over 2D con-
figurations.
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Chapter 9

Conclusion and Future Directions

Overview
In this thesis, we have introduced key modules that would enable embodied agents to work and
to learn from the visual data collected from their own body motion. Three key questions we try to
answer in the beginning of the thesis are: (1) How should we parse the visual data into structured
representations of the physical scene? What should be the representations? (2) How can we use
the scene representations for the agents to see, act, reason, and learn language? (3) How can the
learning of other modules improve the agent’s visual perception?

We answered the first question by showing that representing scenes as egomotion-stabilized
3D feature representations has several advantages over non-stabilized representations since it can
better capture the bias of object permanence. To infer the representations from image observa-
tions, we proposed neural architecture and objective function that will allow the model to obtain
the representations by learning from self-collected data through moving around. Next, we moved
on to answer the second question by showing the learned representations are suitable for learning
many downstream tasks regarding seeing, acting, reasoning, and learning language and concepts.
Lastly, We answered the third question by demonstrating how the agents can learn and improve
their object detection and visual representations by jointly training with these downstream tasks.

The work present in the thesis serves as an initial step towards building embodied agents that
can extract information and learn from their first-person experience with the 3D environments.
It opens up many questions we can ask as how to deploy more and more intelligent agents.

General understanding of third-person images/videos
To efficiently learn, humans not only rely on our own personal experience to learn, we also try
to learn by watching how other people behave. Fortunately, it is very easy to access such data
on the Internet nowadays. We can see people doing all kinds of things on Youtube and social
media. While the current trend in Computer vision is to understand these internet images/videos
by learning only from passively collected data, we believe that learning visual parsing and per-
ception on these active embodied agents might actually make the problem easier since the agents
now can collect rich and dense data around the objects they care about. One key question then
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is how can we deploy the visual understanding we have developed on these embodied agents for
them to understand these images and videos available on the internet, so the agents can scale up
their knowledge acquisition?

Here are some key limitations in the present work that hinders us to directly apply our visual
perception module on internet images and videos. One limitation of the current model is that it
requires reliable camera pose estimation to aggregate frames across different viewpoints. While
camera poses are directly accessible on a physical agent through inverse kinematics, they are
unavailable in Internet videos and they need to be estimated. Additionally, in our work, we show
having reliable depth sensors can boost the performance of the model, but this again needs to be
estimated for an internet video. Having a robust and generic camera pose and depth estimator
will be critical to run the model on these Internet videos. Another key limitation is the need of
storing and applying computation on a 4D tensor latent space. Exploiting the sparsity of our 4D
tensors to save GPU memory is an important direction for scaling up our model to large scenes.

Parsing Objects into functional parts

Being able to use existing knowledge to explore is good, but how effectively we can use exist-
ing knowledge depends much on how well we organize them. To acquire new knowledge or
concepts more efficiently, we need to improve the way we organize existing knowledge. In the
thesis, we discuss how to correspond rigid objects based on their appearance. To push forward, I
think we should further factorize the learned whole-object visual concepts into functional parts.
By splitting concepts into smaller entities, the model can discover more shared concepts across
object instances, and can learn new concepts efficiently by exploiting the combinations between
these factorized concepts. By learning about functional properties of the part, the model can
organize objects in a way that will aid their learning in intelligently interacting with objects.
Learning diverse and discrete concepts further provides the machines the ability to formulate
discrete numbers of hypotheses, which enable them to collect informative data in a systematic
way.

Integrating other sensor modalities

In this thesis, we only consider how to aggregate and parse information visual inputs, however,
there are a lot more sensors that we can quipe on an embodied agent and they all can contribute
unique information about the world. For instance, by having a haptic and force sensor, the
agents can easily understand invisible physics properties, such as weights and friction; by having
audio sensor, the agents can sense critical event that is hard to observe purely from the change
in the visual observations, e.g., pushing the button on a toy to make it play music. The 3D
feature representation space we proposed is a suitable representation space for us to ground
jointly information coming from all senses.
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Handling deformable and articulated objects
In both our concept learning and dynamics learning work, we consider rigidly moving objects.
Learning object dynamics and concepts of soft bodies, articulated structure and fluids would em-
power the agents knowledge about how objects actually work and how to act efficiently to them.
Learning about these more complex object dynamics will require forecasting dense 3D motion
fields, or considering sub-object (part or particle) graphs. For learning concepts and object cor-
respondence, we will require adding not non-rigidly deformation between the category template
and the instances. Adding such deformable parametrization would increase the expressiveness
of the prototype dictionary.

Improving Exploration through Visual Parsing
To continually and efficiently collect more informative data, the agents need to find better ways
to explore. Inspired by the findings in psychology, I propose to use the developed visual cues to
guide the exploration in skill learning. When the agents encounter new objects, they should use
the learned visual parsing to parse the objects into meaning parts and structure, or use the learned
visual features to retrieve relevant acquired skills to aid current skill deployment. Being able to
reuse existing skills and use visual cues to guide exploration is a key and interesting venue to
efficient skill acquisition.

Learning from other research disciplines
Most of my works are inspired by reading and talking to people outside the region of machine
learning and computer vision. I believe to answer those three questions we state upfront, we will
need to bring together insights and findings from multiple research disciplines in artificial intel-
ligence including machine learning, computer vision, robotics, linguistic and psychology. De-
velopmental psychology studies what cognitive or motor abilities an intelligent agent (humans)
possess, in which order, and how they get developed throughout a persons lifespan. Robotics
research tells us how to make things work on physical robots, and what type of visual parsing
outputs will enable that. Linguistics explains how humans think in terms of symbols, and how it
is related to our actual experience with the world. Notice how related these findings are related
to the questions we seek to answer! We already can get many potential answers from the existing
works and theories in these research disciplines. I hope to see how learning these disciplines can
provide new insights to my research. I also hope to see what we find in my research can provide
new insights in these fields.
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[84] Montiel J. M. M. Mur-Artal, Raúl and Juan D. Tardós. ORB-SLAM: a versatile and
accurate monocular SLAM system. IEEE Transactions on Robotics, 31(5):1147–1163,
2015. doi: 10.1109/TRO.2015.2463671. 1.1

[85] Venkatraman Narayanan and Maxim Likhachev. Deliberative object pose estimation in
clutter. In 2017 IEEE International Conference on Robotics and Automation (ICRA),
pages 3125–3130. IEEE, 2017. 6.1

113

https://openreview.net/forum?id=rJgMlhRctm
http://dx.doi.org/10.1016/S0893-6080(96)00035-4
http://arxiv.org/abs/1905.10520
http://arxiv.org/abs/1905.10520


[86] P. Ochs and T. Brox. Object segmentation in video: a hierarchical variational approach
for turning point trajectories into dense regions. In ICCV, 2011. 3.3

[87] Bruno A. Olshausen. Perception as an inference problem. 2013. 8.1

[88] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with con-
trastive predictive coding. arXiv:1807.03748, 2018. 3.2

[89] OpenAI, Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Józefowicz, Bob
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